MolTaut: A Tool for the Rapid Generation of Favorable Tautomer in Aqueous Solution
Fast and proper treatment of the tautomeric states for drug-like molecules is critical in computer-aided drug discovery since the major tautomer of a molecule determines its pharmacophore features and physical properties. We present MolTaut, a tool for the rapid generation of favorable states of dru...
Saved in:
Published in | Journal of chemical information and modeling Vol. 63; no. 7; pp. 1833 - 1840 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
10.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Fast and proper treatment of the tautomeric states for drug-like molecules is critical in computer-aided drug discovery since the major tautomer of a molecule determines its pharmacophore features and physical properties. We present MolTaut, a tool for the rapid generation of favorable states of drug-like molecules in water. MolTaut works by enumerating possible tautomeric states with tautomeric transformation rules, ranking tautomers with their relative internal energies and solvation energies calculated by AI-based models, and generating preferred ionization states according to predicted microscopic pK a. Our test shows that the ranking ability of the AI-based tautomer scoring approach is comparable to the DFT method (wB97X/6-31G*//M062X/6-31G*/SMD) from which the AI models try to learn. We find that the substitution effect on tautomeric equilibrium is well predicted by MolTaut, which is helpful in computer-aided ligand design. The source code of MolTaut is freely available to researchers and can be accessed at https://github.com/xundrug/moltaut. To facilitate the usage of MolTaut by medicinal chemists, we made a free web server, which is available at http://moltaut.xundrug.cn. MolTaut is a handy tool for investigating the tautomerization issue in drug discovery. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1549-9596 1549-960X |
DOI: | 10.1021/acs.jcim.2c01393 |