Quantifying the Benefits of Imputation over QSAR Methods in Toxicology Data Modeling

Imputation machine learning (ML) surpasses traditional approaches in modeling toxicity data. The method was tested on an open-source data set comprising approximately 2500 ingredients with limited in vitro and in vivo data obtained from the OECD QSAR Toolbox. By leveraging the relationships between...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical information and modeling Vol. 64; no. 7; pp. 2624 - 2636
Main Authors Whitehead, Thomas M., Strickland, Joel, Conduit, Gareth J., Borrel, Alexandre, Mucs, Daniel, Baskerville-Abraham, Irene
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 08.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Imputation machine learning (ML) surpasses traditional approaches in modeling toxicity data. The method was tested on an open-source data set comprising approximately 2500 ingredients with limited in vitro and in vivo data obtained from the OECD QSAR Toolbox. By leveraging the relationships between different toxicological end points, imputation extracts more valuable information from each data point compared to well-established single end point methods, such as ML-based Quantitative Structure Activity Relationship (QSAR) approaches, providing a final improvement of up to around 0.2 in the coefficient of determination. A significant aspect of this methodology is its resilience to the inclusion of extraneous chemical or experimental data. While additional data typically introduces a considerable level of noise and can hinder performance of single end point QSAR modeling, imputation models remain unaffected. This implies a reduction in the need for laborious manual preprocessing tasks such as feature selection, thereby making data preparation for ML analysis more efficient. This successful test, conducted on open-source data, validates the efficacy of imputation approaches in toxicity data analysis. This work opens the way for applying similar methods to other types of sparse toxicological data matrices, and so we discuss the development of regulatory authority guidelines to accept imputation models, a key aspect for the wider adoption of these methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1549-9596
1549-960X
1549-960X
DOI:10.1021/acs.jcim.3c01695