Facile and Efficient Patterning Method for Silver Nanowires and Its Application to Stretchable Electroluminescent Displays

The patterning of silver nanowires (AgNWs) is subject to critical challenges, which have seriously limited their practical applications. This work describes a simple and efficient method combining screen printing with vacuum filtration for patterning AgNW networks. The screen-printed poly­(dimethyls...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 12; no. 21; pp. 24074 - 24085
Main Authors Lin, Yong, Yuan, Wei, Ding, Chen, Chen, Shulin, Su, Wenming, Hu, Hailong, Cui, Zheng, Li, Fushan
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 27.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The patterning of silver nanowires (AgNWs) is subject to critical challenges, which have seriously limited their practical applications. This work describes a simple and efficient method combining screen printing with vacuum filtration for patterning AgNW networks. The screen-printed poly­(dimethylsiloxane) (PDMS) mask layer was shown to be strongly adhered to the filtration membrane, which resulted in well-defined sharp edges of the deposited AgNW patterns, and a 50 μm patterning resolution was achieved. The patterned films with low densities of AgNWs (≤15 μg/cm2) were transferred to the surface of PDMS to make patterned stretchable transparent conductive films (TCFs). The low sheet resistance of 7.3 Ω/sq was achieved at an optical transmittance of 79.6% (at 550 nm wavelength) with a AgNW deposition density of only 12.5 μg/cm2. As an application example, the patterned TCFs were used as the top electrodes to fabricate stretchable alternating current electroluminescent (ACEL) displays with stretchability up to 70% of their original dimension, which were applied to a smart system for simulating heart beats together with a digitally operated flexible circuit. The ACEL device exhibited a bright and uniform emission with a clear and smooth edge even with a pattern width as narrow as 100 μm, as well as exceptional elasticity and durability in spite of bending, stretching, and twisting. The present work provides a new way of patterning AgNWs and can be extended to a variety of applications.
AbstractList The patterning of silver nanowires (AgNWs) is subject to critical challenges, which have seriously limited their practical applications. This work describes a simple and efficient method combining screen printing with vacuum filtration for patterning AgNW networks. The screen-printed poly­(dimethylsiloxane) (PDMS) mask layer was shown to be strongly adhered to the filtration membrane, which resulted in well-defined sharp edges of the deposited AgNW patterns, and a 50 μm patterning resolution was achieved. The patterned films with low densities of AgNWs (≤15 μg/cm2) were transferred to the surface of PDMS to make patterned stretchable transparent conductive films (TCFs). The low sheet resistance of 7.3 Ω/sq was achieved at an optical transmittance of 79.6% (at 550 nm wavelength) with a AgNW deposition density of only 12.5 μg/cm2. As an application example, the patterned TCFs were used as the top electrodes to fabricate stretchable alternating current electroluminescent (ACEL) displays with stretchability up to 70% of their original dimension, which were applied to a smart system for simulating heart beats together with a digitally operated flexible circuit. The ACEL device exhibited a bright and uniform emission with a clear and smooth edge even with a pattern width as narrow as 100 μm, as well as exceptional elasticity and durability in spite of bending, stretching, and twisting. The present work provides a new way of patterning AgNWs and can be extended to a variety of applications.
The patterning of silver nanowires (AgNWs) is subject to critical challenges, which have seriously limited their practical applications. This work describes a simple and efficient method combining screen printing with vacuum filtration for patterning AgNW networks. The screen-printed poly(dimethylsiloxane) (PDMS) mask layer was shown to be strongly adhered to the filtration membrane, which resulted in well-defined sharp edges of the deposited AgNW patterns, and a 50 μm patterning resolution was achieved. The patterned films with low densities of AgNWs (≤15 μg/cm ) were transferred to the surface of PDMS to make patterned stretchable transparent conductive films (TCFs). The low sheet resistance of 7.3 Ω/sq was achieved at an optical transmittance of 79.6% (at 550 nm wavelength) with a AgNW deposition density of only 12.5 μg/cm . As an application example, the patterned TCFs were used as the top electrodes to fabricate stretchable alternating current electroluminescent (ACEL) displays with stretchability up to 70% of their original dimension, which were applied to a smart system for simulating heart beats together with a digitally operated flexible circuit. The ACEL device exhibited a bright and uniform emission with a clear and smooth edge even with a pattern width as narrow as 100 μm, as well as exceptional elasticity and durability in spite of bending, stretching, and twisting. The present work provides a new way of patterning AgNWs and can be extended to a variety of applications.
The patterning of silver nanowires (AgNWs) is subject to critical challenges, which have seriously limited their practical applications. This work describes a simple and efficient method combining screen printing with vacuum filtration for patterning AgNW networks. The screen-printed poly(dimethylsiloxane) (PDMS) mask layer was shown to be strongly adhered to the filtration membrane, which resulted in well-defined sharp edges of the deposited AgNW patterns, and a 50 μm patterning resolution was achieved. The patterned films with low densities of AgNWs (≤15 μg/cm²) were transferred to the surface of PDMS to make patterned stretchable transparent conductive films (TCFs). The low sheet resistance of 7.3 Ω/sq was achieved at an optical transmittance of 79.6% (at 550 nm wavelength) with a AgNW deposition density of only 12.5 μg/cm². As an application example, the patterned TCFs were used as the top electrodes to fabricate stretchable alternating current electroluminescent (ACEL) displays with stretchability up to 70% of their original dimension, which were applied to a smart system for simulating heart beats together with a digitally operated flexible circuit. The ACEL device exhibited a bright and uniform emission with a clear and smooth edge even with a pattern width as narrow as 100 μm, as well as exceptional elasticity and durability in spite of bending, stretching, and twisting. The present work provides a new way of patterning AgNWs and can be extended to a variety of applications.
The patterning of silver nanowires (AgNWs) is subject to critical challenges, which have seriously limited their practical applications. This work describes a simple and efficient method combining screen printing with vacuum filtration for patterning AgNW networks. The screen-printed poly(dimethylsiloxane) (PDMS) mask layer was shown to be strongly adhered to the filtration membrane, which resulted in well-defined sharp edges of the deposited AgNW patterns, and a 50 μm patterning resolution was achieved. The patterned films with low densities of AgNWs (≤15 μg/cm2) were transferred to the surface of PDMS to make patterned stretchable transparent conductive films (TCFs). The low sheet resistance of 7.3 Ω/sq was achieved at an optical transmittance of 79.6% (at 550 nm wavelength) with a AgNW deposition density of only 12.5 μg/cm2. As an application example, the patterned TCFs were used as the top electrodes to fabricate stretchable alternating current electroluminescent (ACEL) displays with stretchability up to 70% of their original dimension, which were applied to a smart system for simulating heart beats together with a digitally operated flexible circuit. The ACEL device exhibited a bright and uniform emission with a clear and smooth edge even with a pattern width as narrow as 100 μm, as well as exceptional elasticity and durability in spite of bending, stretching, and twisting. The present work provides a new way of patterning AgNWs and can be extended to a variety of applications.The patterning of silver nanowires (AgNWs) is subject to critical challenges, which have seriously limited their practical applications. This work describes a simple and efficient method combining screen printing with vacuum filtration for patterning AgNW networks. The screen-printed poly(dimethylsiloxane) (PDMS) mask layer was shown to be strongly adhered to the filtration membrane, which resulted in well-defined sharp edges of the deposited AgNW patterns, and a 50 μm patterning resolution was achieved. The patterned films with low densities of AgNWs (≤15 μg/cm2) were transferred to the surface of PDMS to make patterned stretchable transparent conductive films (TCFs). The low sheet resistance of 7.3 Ω/sq was achieved at an optical transmittance of 79.6% (at 550 nm wavelength) with a AgNW deposition density of only 12.5 μg/cm2. As an application example, the patterned TCFs were used as the top electrodes to fabricate stretchable alternating current electroluminescent (ACEL) displays with stretchability up to 70% of their original dimension, which were applied to a smart system for simulating heart beats together with a digitally operated flexible circuit. The ACEL device exhibited a bright and uniform emission with a clear and smooth edge even with a pattern width as narrow as 100 μm, as well as exceptional elasticity and durability in spite of bending, stretching, and twisting. The present work provides a new way of patterning AgNWs and can be extended to a variety of applications.
Author Chen, Shulin
Li, Fushan
Su, Wenming
Hu, Hailong
Lin, Yong
Cui, Zheng
Ding, Chen
Yuan, Wei
AuthorAffiliation Institute of Optoelectronic Technology
Fuzhou University
Printable Electronics Research Centre
AuthorAffiliation_xml – name: Institute of Optoelectronic Technology
– name: Printable Electronics Research Centre
– name: Fuzhou University
Author_xml – sequence: 1
  givenname: Yong
  surname: Lin
  fullname: Lin, Yong
  organization: Printable Electronics Research Centre
– sequence: 2
  givenname: Wei
  orcidid: 0000-0002-3951-1719
  surname: Yuan
  fullname: Yuan, Wei
  email: wyuan2014@sinano.ac.cn
  organization: Printable Electronics Research Centre
– sequence: 3
  givenname: Chen
  surname: Ding
  fullname: Ding, Chen
  organization: Printable Electronics Research Centre
– sequence: 4
  givenname: Shulin
  surname: Chen
  fullname: Chen, Shulin
  organization: Printable Electronics Research Centre
– sequence: 5
  givenname: Wenming
  orcidid: 0000-0003-1721-1923
  surname: Su
  fullname: Su, Wenming
  organization: Printable Electronics Research Centre
– sequence: 6
  givenname: Hailong
  surname: Hu
  fullname: Hu, Hailong
  organization: Fuzhou University
– sequence: 7
  givenname: Zheng
  surname: Cui
  fullname: Cui, Zheng
  organization: Printable Electronics Research Centre
– sequence: 8
  givenname: Fushan
  orcidid: 0000-0002-6074-2490
  surname: Li
  fullname: Li, Fushan
  email: fsli@fzu.edu.cn
  organization: Fuzhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32363851$$D View this record in MEDLINE/PubMed
BookMark eNqFkd1rFDEUxYO02A999VHyKMKuSWYykzyWuv2A2haqz8Od7B2bkknGJKPUv95sd-2DUIRAQvidw73nHJE9HzwS8o6zJWeCfwKTYLRL3QveSvmKHHJd1wslpNh7ftf1ATlK6YGxphJMviYHlaiaSkl-SH6fgbEOKfg1XQ2DNRZ9preQM0Zv_Xf6BfN9WNMhRHpn3U-M9Bp8-GUjpifRZU70ZJqcNZBt8DQHepcjZnMPffFdOTQ5BjeP1mMyG_PPNk0OHtMbsj-AS_h2dx-Tb2err6cXi6ub88vTk6sFlCHzApViVdMoxfVag9CoatHodhiY1C0YVL3sFTN1I3nfatYCk2VlxkBUvEUzVMfkw9Z3iuHHjCl3oy2TOAcew5y6kg9rlK7K-S9aacWl1GKDvt-hcz_iupuiHSE-dn-jLcByC5gYUoo4PCOcdZvuum133a67Iqj_ERibn0LNEax7WfZxKyv_3UOYoy9hvgT_ARXTrQE
CitedBy_id crossref_primary_10_1002_admt_202101010
crossref_primary_10_1002_advs_202302858
crossref_primary_10_1088_2058_8585_ac8b1c
crossref_primary_10_1007_s12274_021_3796_y
crossref_primary_10_1002_admt_202300972
crossref_primary_10_1021_acsanm_3c03457
crossref_primary_10_3390_ma17164059
crossref_primary_10_1002_admt_202301262
crossref_primary_10_1088_2631_8695_acc23a
crossref_primary_10_1021_acsanm_2c00852
crossref_primary_10_1007_s12274_022_4088_x
crossref_primary_10_1021_acsami_2c21898
crossref_primary_10_1039_D2NH00313A
crossref_primary_10_1021_acsami_1c18065
crossref_primary_10_1002_sdtp_15829
crossref_primary_10_1021_acsami_2c18761
crossref_primary_10_1021_acsami_2c21697
crossref_primary_10_1021_acsami_2c20681
crossref_primary_10_1002_admt_202000838
crossref_primary_10_1088_2053_1591_ac7288
crossref_primary_10_1007_s10118_022_2803_4
crossref_primary_10_1002_adma_202313909
crossref_primary_10_1007_s40820_023_01199_y
crossref_primary_10_1002_admi_202100608
crossref_primary_10_1039_D2TC02008D
crossref_primary_10_1016_j_bios_2021_113719
crossref_primary_10_1557_s43577_024_00735_4
crossref_primary_10_1021_acs_chemmater_2c02513
crossref_primary_10_1002_admt_202301280
crossref_primary_10_1039_D0TC03052J
crossref_primary_10_3390_photonics8060220
crossref_primary_10_1002_smll_202106006
crossref_primary_10_1002_adem_202300675
crossref_primary_10_3390_polym15122640
crossref_primary_10_1021_acsami_2c03807
crossref_primary_10_1007_s10853_023_09152_5
crossref_primary_10_1016_j_nanoen_2022_107653
crossref_primary_10_1021_acsami_1c04397
crossref_primary_10_2139_ssrn_4051178
crossref_primary_10_1021_acsami_0c11682
crossref_primary_10_1021_acsami_1c11577
crossref_primary_10_1016_j_apsusc_2023_158232
crossref_primary_10_1038_s41528_024_00322_2
crossref_primary_10_1002_sdtp_15924
crossref_primary_10_1080_10408436_2024_2379246
crossref_primary_10_1002_adfm_202417982
crossref_primary_10_3390_nano11061571
crossref_primary_10_1002_adma_202008849
crossref_primary_10_1002_adfm_202302473
crossref_primary_10_1039_D0CE01779E
crossref_primary_10_1007_s12274_021_4042_3
crossref_primary_10_1016_j_nanoen_2022_107965
crossref_primary_10_1021_acsami_1c20931
crossref_primary_10_1002_admt_202201716
crossref_primary_10_1002_admi_202200672
crossref_primary_10_1021_acsaelm_1c00039
crossref_primary_10_1021_acsaelm_1c00833
crossref_primary_10_1039_D2TC02657K
crossref_primary_10_1039_D4NR03517H
crossref_primary_10_1021_acsami_1c09467
crossref_primary_10_1016_j_cej_2023_143572
crossref_primary_10_1021_acsami_1c12438
crossref_primary_10_1002_adma_202106184
crossref_primary_10_1021_acsaelm_1c01258
crossref_primary_10_1021_acsami_1c14816
crossref_primary_10_1002_smll_202402638
crossref_primary_10_1002_admt_202402116
crossref_primary_10_1002_adom_202200278
crossref_primary_10_1016_j_ceja_2022_100380
crossref_primary_10_1177_15280837241227246
crossref_primary_10_1016_j_compositesb_2024_111787
crossref_primary_10_1002_aelm_202100194
crossref_primary_10_2139_ssrn_4145616
crossref_primary_10_1039_D2TC01168A
crossref_primary_10_1002_adfm_202302785
crossref_primary_10_1002_adsu_202400140
crossref_primary_10_1002_ejic_202100710
crossref_primary_10_1007_s12274_023_5832_6
crossref_primary_10_1002_smsc_202300143
crossref_primary_10_1016_j_apmt_2023_101764
crossref_primary_10_3390_coatings10090865
crossref_primary_10_1007_s42114_024_00957_9
Cites_doi 10.1002/smll.201502849
10.1021/acsami.6b00719
10.1002/adma.201404446
10.1002/adma.201504239
10.1002/adfm.201801834
10.1002/admt.201700040
10.1021/cm902876u
10.1002/adma.201704738
10.1007/s12274-010-0017-5
10.1039/C2NR32221H
10.1021/acsami.7b06474
10.1021/acs.accounts.7b00062
10.1038/nphoton.2013.242
10.1021/acsami.5b02508
10.1021/acsnano.8b04245
10.1002/adfm.201904377
10.1088/0957-4484/22/24/245201
10.1002/adma.201003398
10.1126/science.1182383
10.1021/acs.nanolett.7b04204
10.1021/am504462f
10.1038/s41565-018-0244-6
10.1002/adma.201504187
10.1088/0957-4484/24/33/335202
10.1002/adma.201405864
10.1021/acsami.5b01875
10.1021/nl502755y
10.1021/acsnano.6b04506
10.1002/adma.201304226
10.1002/adhm.201601159
10.1002/adma.201500917
10.1002/adma.201405486
10.1021/acsnano.7b01714
10.1021/acsami.8b10138
10.1039/C8TC01691G
10.1088/0957-4484/18/34/345202
10.1021/am506987w
10.1021/nn901903b
10.1021/nn3026172
10.1002/adma.201200359
10.1021/acsami.7b19173
10.1002/adma.200901141
10.1039/C7NR09570H
10.1002/admt.201900196
10.1002/adma.200801788
10.1039/C5TC04364F
10.1002/adma.201201948
10.1021/nn501204t
10.1021/acsnano.6b04830
10.1021/nl9001525
10.1021/am403986f
10.1002/adma.201602083
10.1002/adma.201101986
10.1002/admt.201700232
10.1021/acsami.5b06370
10.1039/C4TC01959H
10.1002/adma.201600772
10.1021/acsnano.5b08137
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.9b21755
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 24085
ExternalDocumentID 32363851
10_1021_acsami_9b21755
b655378018
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a363t-e8803668819d9a29e842697ff0597ace8b5b80c4651b7907a0582400a2317ecf3
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 06:18:35 EDT 2025
Fri Jul 11 02:34:27 EDT 2025
Thu Jan 02 22:57:59 EST 2025
Tue Jul 01 01:22:19 EDT 2025
Thu Apr 24 23:12:34 EDT 2025
Thu Aug 27 22:10:51 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords vacuum filtration
stretchable electroluminescent displays
patterned transparent conductive films
screen printing
patterning silver nanowires
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a363t-e8803668819d9a29e842697ff0597ace8b5b80c4651b7907a0582400a2317ecf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1721-1923
0000-0002-6074-2490
0000-0002-3951-1719
PMID 32363851
PQID 2398155929
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2440689389
proquest_miscellaneous_2398155929
pubmed_primary_32363851
crossref_primary_10_1021_acsami_9b21755
crossref_citationtrail_10_1021_acsami_9b21755
acs_journals_10_1021_acsami_9b21755
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-27
PublicationDateYYYYMMDD 2020-05-27
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref51/cit51
  doi: 10.1002/smll.201502849
– ident: ref38/cit38
  doi: 10.1021/acsami.6b00719
– ident: ref4/cit4
  doi: 10.1002/adma.201404446
– ident: ref17/cit17
  doi: 10.1002/adma.201504239
– ident: ref58/cit58
  doi: 10.1002/adfm.201801834
– ident: ref54/cit54
  doi: 10.1002/admt.201700040
– ident: ref11/cit11
  doi: 10.1021/cm902876u
– ident: ref47/cit47
  doi: 10.1002/adma.201704738
– ident: ref39/cit39
  doi: 10.1007/s12274-010-0017-5
– ident: ref33/cit33
  doi: 10.1039/C2NR32221H
– ident: ref40/cit40
  doi: 10.1021/acsami.7b06474
– ident: ref9/cit9
  doi: 10.1021/acs.accounts.7b00062
– ident: ref19/cit19
  doi: 10.1038/nphoton.2013.242
– ident: ref30/cit30
  doi: 10.1021/acsami.5b02508
– ident: ref49/cit49
  doi: 10.1021/acsnano.8b04245
– ident: ref55/cit55
  doi: 10.1002/adfm.201904377
– ident: ref25/cit25
  doi: 10.1088/0957-4484/22/24/245201
– ident: ref32/cit32
  doi: 10.1002/adma.201003398
– ident: ref1/cit1
  doi: 10.1126/science.1182383
– ident: ref16/cit16
  doi: 10.1021/acs.nanolett.7b04204
– ident: ref29/cit29
  doi: 10.1021/am504462f
– ident: ref20/cit20
  doi: 10.1038/s41565-018-0244-6
– ident: ref57/cit57
  doi: 10.1002/adma.201504187
– ident: ref35/cit35
  doi: 10.1088/0957-4484/24/33/335202
– ident: ref2/cit2
  doi: 10.1002/adma.201405864
– ident: ref44/cit44
  doi: 10.1021/acsami.5b01875
– ident: ref13/cit13
  doi: 10.1021/nl502755y
– ident: ref26/cit26
  doi: 10.1021/acsnano.6b04506
– ident: ref21/cit21
  doi: 10.1002/adma.201304226
– ident: ref31/cit31
  doi: 10.1002/adhm.201601159
– ident: ref52/cit52
  doi: 10.1002/adma.201500917
– ident: ref56/cit56
  doi: 10.1002/adma.201405486
– ident: ref36/cit36
  doi: 10.1021/acsnano.7b01714
– ident: ref24/cit24
  doi: 10.1021/acsami.8b10138
– ident: ref50/cit50
  doi: 10.1039/C8TC01691G
– ident: ref6/cit6
  doi: 10.1088/0957-4484/18/34/345202
– ident: ref46/cit46
  doi: 10.1021/am506987w
– ident: ref15/cit15
  doi: 10.1021/nn901903b
– ident: ref8/cit8
  doi: 10.1021/nn3026172
– ident: ref48/cit48
  doi: 10.1002/adma.201200359
– ident: ref41/cit41
  doi: 10.1021/acsami.7b19173
– ident: ref5/cit5
  doi: 10.1002/adma.200901141
– ident: ref27/cit27
  doi: 10.1039/C7NR09570H
– ident: ref23/cit23
  doi: 10.1002/admt.201900196
– ident: ref3/cit3
  doi: 10.1002/adma.200801788
– ident: ref42/cit42
  doi: 10.1039/C5TC04364F
– ident: ref10/cit10
  doi: 10.1002/adma.201201948
– ident: ref22/cit22
  doi: 10.1021/nn501204t
– ident: ref43/cit43
  doi: 10.1021/acsnano.6b04830
– ident: ref14/cit14
  doi: 10.1021/nl9001525
– ident: ref34/cit34
  doi: 10.1021/am403986f
– ident: ref53/cit53
  doi: 10.1002/adma.201602083
– ident: ref12/cit12
  doi: 10.1002/adma.201101986
– ident: ref28/cit28
  doi: 10.1002/admt.201700232
– ident: ref37/cit37
  doi: 10.1021/acsami.5b06370
– ident: ref18/cit18
  doi: 10.1039/C4TC01959H
– ident: ref45/cit45
  doi: 10.1002/adma.201600772
– ident: ref7/cit7
  doi: 10.1021/acsnano.5b08137
SSID ssj0063205
Score 2.57213
Snippet The patterning of silver nanowires (AgNWs) is subject to critical challenges, which have seriously limited their practical applications. This work describes a...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 24074
SubjectTerms durability
electrodes
filtration
heart rate
nanosilver
nanowires
transmittance
wavelengths
Title Facile and Efficient Patterning Method for Silver Nanowires and Its Application to Stretchable Electroluminescent Displays
URI http://dx.doi.org/10.1021/acsami.9b21755
https://www.ncbi.nlm.nih.gov/pubmed/32363851
https://www.proquest.com/docview/2398155929
https://www.proquest.com/docview/2440689389
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swELZYedkeGL822BgyGtKezBonTpzHqrQqkzohdUi8RbZjS4gqreb0Af567py0DFAZ72clcc533_nuviPkFJy25SnXjHOXsURqx7SLFFNlZCXgV5Ek2O88_p2OrpJf1-L68b7jeQafRz-V8TgKJ9cAnoV4RzZ5KjMMs3r9ydLmpjEPxYoQkSdMgsda0jO-WI9OyPinTmgNsgweZvixoTvygZgQC0tuzxa1PjP3L2kb__vy22SrhZm01-jFDtmw1S758A_54B65HyoDJoGqqqSDQCQB_odeBr5NvCyh4zBcmgKqpZMbLKCmYIpnyG3sw6KL2tPeY_6b1jOKOW5QA2zHooNmwA4YP6ysxyJQen7j51N15_fJ1XDwpz9i7SQGpuI0rpmFUx6nqQT4UOaK51ZiB2zmHICzTBkrtdCya3Cuus4g3FZdIbE4VQF6zKxx8SfSqWaVPSDUgUF1hmPxP475cLnQpchlJDJTAtbjh-Q7bFrRniRfhCQ5j4pmJ4t2Jw8JW_7AwrRk5jhTY7pW_sdKft7QeKyVPFnqQwEnDdMnqrKzhS-QKRGTuDx_RSYBgAQQUILM50aZVs-LOewlANwvb_rCr-Q9x9C-iy2DR6RT_13Yb4B_an0cVP8BzXsA5w
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOvB_laQSIk8vGeTkHDqt2V7u0WyG1lXoLtmNLFVW2wlmh9s_wV_hpzDjJlocWcanENZokjj2e-ZyZ-QbgNTptKzKhuRAu54nUjmsXKa6qyErEr2mSUL3zbC-bHCYfjtKjNfjW18LgIDw-yYcg_gW7QPQOr1FHnEIjhk77LMode_YVz2j-_XQbF_SNEOPRwdaEd20EuIqzuOEWVTTOMom-ryqUKKyk8s3cOUQWuTJW6lTLgaGm4DrHs6IapJIyKxVCn9waF-Nzr8BVRD6CTnfDrf3e1GexCDmSUZEkHO9JelbIP8ZLvs_4X33fCkAbHNv4FnxfTknIZ_m8uWj0pjn_jS3yP56z23CzA9Vs2O6CO7Bm67tw4yeqxXtwPlYGDSBTdcVGgTYDvS37GNhF6dcQm4VW2gwxPNs_pnRxho5nTkzOPtw0bTwbXkT7WTNnFNFHpafiMzZq2wmhqac6Akp5ZdvH_vREnfn7cHgpH_8A1ut5bR8Bc-g-nBFU6kBNTVyR6iotZJTmpkJkKzbgFS5S2dkNX4aUABGV7cqV3cptAO_1pjQddTt1EDlZKf92KX_akpaslHzZq2GJdoWCRaq284UviReSQtai-ItMgnAQAa9EmYetDi_fFwucS4Tzj__pC1_AtcnBbLfcne7tPIHrgn5qDKhY8imsN18W9hkiv0Y_D7uPwafLVt0fS-JgEQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIiF64P0oTyNAnFw2zss5cFh1d9WltKpUKvUWbMeWqlbZFc4KtX-Hv8IPY8ZJlpcWcanENZq87PHMZ8_MNwCv0GlbkQnNhXA5T6R2XLtIcVVFViJ-TZOE6p339rOdo-T9cXq8Bl_7Whj8CI9P8iGIT6t6XrmOYSB6i9epK06hEUenfSblrj3_gvs0_246wkl9LcRk_HF7h3etBLiKs7jhFtU0zjKJ_q8qlCispBLO3DlEF7kyVupUy4GhxuA6x_2iGqSSsisVwp_cGhfjc6_AVYoR0g5vuH3Ym_ssFiFPMiqShOM9Sc8M-cf3kv8z_lf_twLUBuc2uQnflsMSclpOtxaN3jIXvzFG_ufjdgtudOCaDdvVcBvWbH0HNn6iXLwLFxNl0BAyVVdsHOgz0Ouyg8AySkdEbC-01GaI5dnhCaWNM3RAM2J09uGmaePZ8EfUnzUzRpF9VH4qQmPjtq0QmnyqJ6DUVzY68fMzde7vwdGl_Px9WK9ntX0IzKEbcUZQyQM1N3FFqqu0kFGamwoRrtiElzhJZWc_fBlSA0RUtjNXdjO3CbzXndJ0FO7USeRspfybpfy8JS9ZKfmiV8US7QsFjVRtZwtfEj8kha5F8ReZBGEhAl-JMg9aPV6-LxY4lgjrH_3THz6HawejSflhur_7GK4LOtsYUM3kE1hvPi_sUwSAjX4WFiCDT5etud8B9QhilA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+and+Efficient+Patterning+Method+for+Silver+Nanowires+and+Its+Application+to+Stretchable+Electroluminescent+Displays&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Lin%2C+Yong&rft.au=Yuan%2C+Wei&rft.au=Ding%2C+Chen&rft.au=Chen%2C+Shulin&rft.date=2020-05-27&rft.eissn=1944-8252&rft.volume=12&rft.issue=21&rft.spage=24074&rft_id=info:doi/10.1021%2Facsami.9b21755&rft_id=info%3Apmid%2F32363851&rft.externalDocID=32363851
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon