Facile and Efficient Patterning Method for Silver Nanowires and Its Application to Stretchable Electroluminescent Displays
The patterning of silver nanowires (AgNWs) is subject to critical challenges, which have seriously limited their practical applications. This work describes a simple and efficient method combining screen printing with vacuum filtration for patterning AgNW networks. The screen-printed poly(dimethyls...
Saved in:
Published in | ACS applied materials & interfaces Vol. 12; no. 21; pp. 24074 - 24085 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
27.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The patterning of silver nanowires (AgNWs) is subject to critical challenges, which have seriously limited their practical applications. This work describes a simple and efficient method combining screen printing with vacuum filtration for patterning AgNW networks. The screen-printed poly(dimethylsiloxane) (PDMS) mask layer was shown to be strongly adhered to the filtration membrane, which resulted in well-defined sharp edges of the deposited AgNW patterns, and a 50 μm patterning resolution was achieved. The patterned films with low densities of AgNWs (≤15 μg/cm2) were transferred to the surface of PDMS to make patterned stretchable transparent conductive films (TCFs). The low sheet resistance of 7.3 Ω/sq was achieved at an optical transmittance of 79.6% (at 550 nm wavelength) with a AgNW deposition density of only 12.5 μg/cm2. As an application example, the patterned TCFs were used as the top electrodes to fabricate stretchable alternating current electroluminescent (ACEL) displays with stretchability up to 70% of their original dimension, which were applied to a smart system for simulating heart beats together with a digitally operated flexible circuit. The ACEL device exhibited a bright and uniform emission with a clear and smooth edge even with a pattern width as narrow as 100 μm, as well as exceptional elasticity and durability in spite of bending, stretching, and twisting. The present work provides a new way of patterning AgNWs and can be extended to a variety of applications. |
---|---|
AbstractList | The patterning of silver nanowires (AgNWs) is subject to critical challenges, which have seriously limited their practical applications. This work describes a simple and efficient method combining screen printing with vacuum filtration for patterning AgNW networks. The screen-printed poly(dimethylsiloxane) (PDMS) mask layer was shown to be strongly adhered to the filtration membrane, which resulted in well-defined sharp edges of the deposited AgNW patterns, and a 50 μm patterning resolution was achieved. The patterned films with low densities of AgNWs (≤15 μg/cm2) were transferred to the surface of PDMS to make patterned stretchable transparent conductive films (TCFs). The low sheet resistance of 7.3 Ω/sq was achieved at an optical transmittance of 79.6% (at 550 nm wavelength) with a AgNW deposition density of only 12.5 μg/cm2. As an application example, the patterned TCFs were used as the top electrodes to fabricate stretchable alternating current electroluminescent (ACEL) displays with stretchability up to 70% of their original dimension, which were applied to a smart system for simulating heart beats together with a digitally operated flexible circuit. The ACEL device exhibited a bright and uniform emission with a clear and smooth edge even with a pattern width as narrow as 100 μm, as well as exceptional elasticity and durability in spite of bending, stretching, and twisting. The present work provides a new way of patterning AgNWs and can be extended to a variety of applications. The patterning of silver nanowires (AgNWs) is subject to critical challenges, which have seriously limited their practical applications. This work describes a simple and efficient method combining screen printing with vacuum filtration for patterning AgNW networks. The screen-printed poly(dimethylsiloxane) (PDMS) mask layer was shown to be strongly adhered to the filtration membrane, which resulted in well-defined sharp edges of the deposited AgNW patterns, and a 50 μm patterning resolution was achieved. The patterned films with low densities of AgNWs (≤15 μg/cm ) were transferred to the surface of PDMS to make patterned stretchable transparent conductive films (TCFs). The low sheet resistance of 7.3 Ω/sq was achieved at an optical transmittance of 79.6% (at 550 nm wavelength) with a AgNW deposition density of only 12.5 μg/cm . As an application example, the patterned TCFs were used as the top electrodes to fabricate stretchable alternating current electroluminescent (ACEL) displays with stretchability up to 70% of their original dimension, which were applied to a smart system for simulating heart beats together with a digitally operated flexible circuit. The ACEL device exhibited a bright and uniform emission with a clear and smooth edge even with a pattern width as narrow as 100 μm, as well as exceptional elasticity and durability in spite of bending, stretching, and twisting. The present work provides a new way of patterning AgNWs and can be extended to a variety of applications. The patterning of silver nanowires (AgNWs) is subject to critical challenges, which have seriously limited their practical applications. This work describes a simple and efficient method combining screen printing with vacuum filtration for patterning AgNW networks. The screen-printed poly(dimethylsiloxane) (PDMS) mask layer was shown to be strongly adhered to the filtration membrane, which resulted in well-defined sharp edges of the deposited AgNW patterns, and a 50 μm patterning resolution was achieved. The patterned films with low densities of AgNWs (≤15 μg/cm²) were transferred to the surface of PDMS to make patterned stretchable transparent conductive films (TCFs). The low sheet resistance of 7.3 Ω/sq was achieved at an optical transmittance of 79.6% (at 550 nm wavelength) with a AgNW deposition density of only 12.5 μg/cm². As an application example, the patterned TCFs were used as the top electrodes to fabricate stretchable alternating current electroluminescent (ACEL) displays with stretchability up to 70% of their original dimension, which were applied to a smart system for simulating heart beats together with a digitally operated flexible circuit. The ACEL device exhibited a bright and uniform emission with a clear and smooth edge even with a pattern width as narrow as 100 μm, as well as exceptional elasticity and durability in spite of bending, stretching, and twisting. The present work provides a new way of patterning AgNWs and can be extended to a variety of applications. The patterning of silver nanowires (AgNWs) is subject to critical challenges, which have seriously limited their practical applications. This work describes a simple and efficient method combining screen printing with vacuum filtration for patterning AgNW networks. The screen-printed poly(dimethylsiloxane) (PDMS) mask layer was shown to be strongly adhered to the filtration membrane, which resulted in well-defined sharp edges of the deposited AgNW patterns, and a 50 μm patterning resolution was achieved. The patterned films with low densities of AgNWs (≤15 μg/cm2) were transferred to the surface of PDMS to make patterned stretchable transparent conductive films (TCFs). The low sheet resistance of 7.3 Ω/sq was achieved at an optical transmittance of 79.6% (at 550 nm wavelength) with a AgNW deposition density of only 12.5 μg/cm2. As an application example, the patterned TCFs were used as the top electrodes to fabricate stretchable alternating current electroluminescent (ACEL) displays with stretchability up to 70% of their original dimension, which were applied to a smart system for simulating heart beats together with a digitally operated flexible circuit. The ACEL device exhibited a bright and uniform emission with a clear and smooth edge even with a pattern width as narrow as 100 μm, as well as exceptional elasticity and durability in spite of bending, stretching, and twisting. The present work provides a new way of patterning AgNWs and can be extended to a variety of applications.The patterning of silver nanowires (AgNWs) is subject to critical challenges, which have seriously limited their practical applications. This work describes a simple and efficient method combining screen printing with vacuum filtration for patterning AgNW networks. The screen-printed poly(dimethylsiloxane) (PDMS) mask layer was shown to be strongly adhered to the filtration membrane, which resulted in well-defined sharp edges of the deposited AgNW patterns, and a 50 μm patterning resolution was achieved. The patterned films with low densities of AgNWs (≤15 μg/cm2) were transferred to the surface of PDMS to make patterned stretchable transparent conductive films (TCFs). The low sheet resistance of 7.3 Ω/sq was achieved at an optical transmittance of 79.6% (at 550 nm wavelength) with a AgNW deposition density of only 12.5 μg/cm2. As an application example, the patterned TCFs were used as the top electrodes to fabricate stretchable alternating current electroluminescent (ACEL) displays with stretchability up to 70% of their original dimension, which were applied to a smart system for simulating heart beats together with a digitally operated flexible circuit. The ACEL device exhibited a bright and uniform emission with a clear and smooth edge even with a pattern width as narrow as 100 μm, as well as exceptional elasticity and durability in spite of bending, stretching, and twisting. The present work provides a new way of patterning AgNWs and can be extended to a variety of applications. |
Author | Chen, Shulin Li, Fushan Su, Wenming Hu, Hailong Lin, Yong Cui, Zheng Ding, Chen Yuan, Wei |
AuthorAffiliation | Institute of Optoelectronic Technology Fuzhou University Printable Electronics Research Centre |
AuthorAffiliation_xml | – name: Institute of Optoelectronic Technology – name: Printable Electronics Research Centre – name: Fuzhou University |
Author_xml | – sequence: 1 givenname: Yong surname: Lin fullname: Lin, Yong organization: Printable Electronics Research Centre – sequence: 2 givenname: Wei orcidid: 0000-0002-3951-1719 surname: Yuan fullname: Yuan, Wei email: wyuan2014@sinano.ac.cn organization: Printable Electronics Research Centre – sequence: 3 givenname: Chen surname: Ding fullname: Ding, Chen organization: Printable Electronics Research Centre – sequence: 4 givenname: Shulin surname: Chen fullname: Chen, Shulin organization: Printable Electronics Research Centre – sequence: 5 givenname: Wenming orcidid: 0000-0003-1721-1923 surname: Su fullname: Su, Wenming organization: Printable Electronics Research Centre – sequence: 6 givenname: Hailong surname: Hu fullname: Hu, Hailong organization: Fuzhou University – sequence: 7 givenname: Zheng surname: Cui fullname: Cui, Zheng organization: Printable Electronics Research Centre – sequence: 8 givenname: Fushan orcidid: 0000-0002-6074-2490 surname: Li fullname: Li, Fushan email: fsli@fzu.edu.cn organization: Fuzhou University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32363851$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkd1rFDEUxYO02A999VHyKMKuSWYykzyWuv2A2haqz8Od7B2bkknGJKPUv95sd-2DUIRAQvidw73nHJE9HzwS8o6zJWeCfwKTYLRL3QveSvmKHHJd1wslpNh7ftf1ATlK6YGxphJMviYHlaiaSkl-SH6fgbEOKfg1XQ2DNRZ9preQM0Zv_Xf6BfN9WNMhRHpn3U-M9Bp8-GUjpifRZU70ZJqcNZBt8DQHepcjZnMPffFdOTQ5BjeP1mMyG_PPNk0OHtMbsj-AS_h2dx-Tb2err6cXi6ub88vTk6sFlCHzApViVdMoxfVag9CoatHodhiY1C0YVL3sFTN1I3nfatYCk2VlxkBUvEUzVMfkw9Z3iuHHjCl3oy2TOAcew5y6kg9rlK7K-S9aacWl1GKDvt-hcz_iupuiHSE-dn-jLcByC5gYUoo4PCOcdZvuum133a67Iqj_ERibn0LNEax7WfZxKyv_3UOYoy9hvgT_ARXTrQE |
CitedBy_id | crossref_primary_10_1002_admt_202101010 crossref_primary_10_1002_advs_202302858 crossref_primary_10_1088_2058_8585_ac8b1c crossref_primary_10_1007_s12274_021_3796_y crossref_primary_10_1002_admt_202300972 crossref_primary_10_1021_acsanm_3c03457 crossref_primary_10_3390_ma17164059 crossref_primary_10_1002_admt_202301262 crossref_primary_10_1088_2631_8695_acc23a crossref_primary_10_1021_acsanm_2c00852 crossref_primary_10_1007_s12274_022_4088_x crossref_primary_10_1021_acsami_2c21898 crossref_primary_10_1039_D2NH00313A crossref_primary_10_1021_acsami_1c18065 crossref_primary_10_1002_sdtp_15829 crossref_primary_10_1021_acsami_2c18761 crossref_primary_10_1021_acsami_2c21697 crossref_primary_10_1021_acsami_2c20681 crossref_primary_10_1002_admt_202000838 crossref_primary_10_1088_2053_1591_ac7288 crossref_primary_10_1007_s10118_022_2803_4 crossref_primary_10_1002_adma_202313909 crossref_primary_10_1007_s40820_023_01199_y crossref_primary_10_1002_admi_202100608 crossref_primary_10_1039_D2TC02008D crossref_primary_10_1016_j_bios_2021_113719 crossref_primary_10_1557_s43577_024_00735_4 crossref_primary_10_1021_acs_chemmater_2c02513 crossref_primary_10_1002_admt_202301280 crossref_primary_10_1039_D0TC03052J crossref_primary_10_3390_photonics8060220 crossref_primary_10_1002_smll_202106006 crossref_primary_10_1002_adem_202300675 crossref_primary_10_3390_polym15122640 crossref_primary_10_1021_acsami_2c03807 crossref_primary_10_1007_s10853_023_09152_5 crossref_primary_10_1016_j_nanoen_2022_107653 crossref_primary_10_1021_acsami_1c04397 crossref_primary_10_2139_ssrn_4051178 crossref_primary_10_1021_acsami_0c11682 crossref_primary_10_1021_acsami_1c11577 crossref_primary_10_1016_j_apsusc_2023_158232 crossref_primary_10_1038_s41528_024_00322_2 crossref_primary_10_1002_sdtp_15924 crossref_primary_10_1080_10408436_2024_2379246 crossref_primary_10_1002_adfm_202417982 crossref_primary_10_3390_nano11061571 crossref_primary_10_1002_adma_202008849 crossref_primary_10_1002_adfm_202302473 crossref_primary_10_1039_D0CE01779E crossref_primary_10_1007_s12274_021_4042_3 crossref_primary_10_1016_j_nanoen_2022_107965 crossref_primary_10_1021_acsami_1c20931 crossref_primary_10_1002_admt_202201716 crossref_primary_10_1002_admi_202200672 crossref_primary_10_1021_acsaelm_1c00039 crossref_primary_10_1021_acsaelm_1c00833 crossref_primary_10_1039_D2TC02657K crossref_primary_10_1039_D4NR03517H crossref_primary_10_1021_acsami_1c09467 crossref_primary_10_1016_j_cej_2023_143572 crossref_primary_10_1021_acsami_1c12438 crossref_primary_10_1002_adma_202106184 crossref_primary_10_1021_acsaelm_1c01258 crossref_primary_10_1021_acsami_1c14816 crossref_primary_10_1002_smll_202402638 crossref_primary_10_1002_admt_202402116 crossref_primary_10_1002_adom_202200278 crossref_primary_10_1016_j_ceja_2022_100380 crossref_primary_10_1177_15280837241227246 crossref_primary_10_1016_j_compositesb_2024_111787 crossref_primary_10_1002_aelm_202100194 crossref_primary_10_2139_ssrn_4145616 crossref_primary_10_1039_D2TC01168A crossref_primary_10_1002_adfm_202302785 crossref_primary_10_1002_adsu_202400140 crossref_primary_10_1002_ejic_202100710 crossref_primary_10_1007_s12274_023_5832_6 crossref_primary_10_1002_smsc_202300143 crossref_primary_10_1016_j_apmt_2023_101764 crossref_primary_10_3390_coatings10090865 crossref_primary_10_1007_s42114_024_00957_9 |
Cites_doi | 10.1002/smll.201502849 10.1021/acsami.6b00719 10.1002/adma.201404446 10.1002/adma.201504239 10.1002/adfm.201801834 10.1002/admt.201700040 10.1021/cm902876u 10.1002/adma.201704738 10.1007/s12274-010-0017-5 10.1039/C2NR32221H 10.1021/acsami.7b06474 10.1021/acs.accounts.7b00062 10.1038/nphoton.2013.242 10.1021/acsami.5b02508 10.1021/acsnano.8b04245 10.1002/adfm.201904377 10.1088/0957-4484/22/24/245201 10.1002/adma.201003398 10.1126/science.1182383 10.1021/acs.nanolett.7b04204 10.1021/am504462f 10.1038/s41565-018-0244-6 10.1002/adma.201504187 10.1088/0957-4484/24/33/335202 10.1002/adma.201405864 10.1021/acsami.5b01875 10.1021/nl502755y 10.1021/acsnano.6b04506 10.1002/adma.201304226 10.1002/adhm.201601159 10.1002/adma.201500917 10.1002/adma.201405486 10.1021/acsnano.7b01714 10.1021/acsami.8b10138 10.1039/C8TC01691G 10.1088/0957-4484/18/34/345202 10.1021/am506987w 10.1021/nn901903b 10.1021/nn3026172 10.1002/adma.201200359 10.1021/acsami.7b19173 10.1002/adma.200901141 10.1039/C7NR09570H 10.1002/admt.201900196 10.1002/adma.200801788 10.1039/C5TC04364F 10.1002/adma.201201948 10.1021/nn501204t 10.1021/acsnano.6b04830 10.1021/nl9001525 10.1021/am403986f 10.1002/adma.201602083 10.1002/adma.201101986 10.1002/admt.201700232 10.1021/acsami.5b06370 10.1039/C4TC01959H 10.1002/adma.201600772 10.1021/acsnano.5b08137 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.9b21755 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 24085 |
ExternalDocumentID | 32363851 10_1021_acsami_9b21755 b655378018 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a363t-e8803668819d9a29e842697ff0597ace8b5b80c4651b7907a0582400a2317ecf3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 06:18:35 EDT 2025 Fri Jul 11 02:34:27 EDT 2025 Thu Jan 02 22:57:59 EST 2025 Tue Jul 01 01:22:19 EDT 2025 Thu Apr 24 23:12:34 EDT 2025 Thu Aug 27 22:10:51 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | vacuum filtration stretchable electroluminescent displays patterned transparent conductive films screen printing patterning silver nanowires |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a363t-e8803668819d9a29e842697ff0597ace8b5b80c4651b7907a0582400a2317ecf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1721-1923 0000-0002-6074-2490 0000-0002-3951-1719 |
PMID | 32363851 |
PQID | 2398155929 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2440689389 proquest_miscellaneous_2398155929 pubmed_primary_32363851 crossref_primary_10_1021_acsami_9b21755 crossref_citationtrail_10_1021_acsami_9b21755 acs_journals_10_1021_acsami_9b21755 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-27 |
PublicationDateYYYYMMDD | 2020-05-27 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref51/cit51 doi: 10.1002/smll.201502849 – ident: ref38/cit38 doi: 10.1021/acsami.6b00719 – ident: ref4/cit4 doi: 10.1002/adma.201404446 – ident: ref17/cit17 doi: 10.1002/adma.201504239 – ident: ref58/cit58 doi: 10.1002/adfm.201801834 – ident: ref54/cit54 doi: 10.1002/admt.201700040 – ident: ref11/cit11 doi: 10.1021/cm902876u – ident: ref47/cit47 doi: 10.1002/adma.201704738 – ident: ref39/cit39 doi: 10.1007/s12274-010-0017-5 – ident: ref33/cit33 doi: 10.1039/C2NR32221H – ident: ref40/cit40 doi: 10.1021/acsami.7b06474 – ident: ref9/cit9 doi: 10.1021/acs.accounts.7b00062 – ident: ref19/cit19 doi: 10.1038/nphoton.2013.242 – ident: ref30/cit30 doi: 10.1021/acsami.5b02508 – ident: ref49/cit49 doi: 10.1021/acsnano.8b04245 – ident: ref55/cit55 doi: 10.1002/adfm.201904377 – ident: ref25/cit25 doi: 10.1088/0957-4484/22/24/245201 – ident: ref32/cit32 doi: 10.1002/adma.201003398 – ident: ref1/cit1 doi: 10.1126/science.1182383 – ident: ref16/cit16 doi: 10.1021/acs.nanolett.7b04204 – ident: ref29/cit29 doi: 10.1021/am504462f – ident: ref20/cit20 doi: 10.1038/s41565-018-0244-6 – ident: ref57/cit57 doi: 10.1002/adma.201504187 – ident: ref35/cit35 doi: 10.1088/0957-4484/24/33/335202 – ident: ref2/cit2 doi: 10.1002/adma.201405864 – ident: ref44/cit44 doi: 10.1021/acsami.5b01875 – ident: ref13/cit13 doi: 10.1021/nl502755y – ident: ref26/cit26 doi: 10.1021/acsnano.6b04506 – ident: ref21/cit21 doi: 10.1002/adma.201304226 – ident: ref31/cit31 doi: 10.1002/adhm.201601159 – ident: ref52/cit52 doi: 10.1002/adma.201500917 – ident: ref56/cit56 doi: 10.1002/adma.201405486 – ident: ref36/cit36 doi: 10.1021/acsnano.7b01714 – ident: ref24/cit24 doi: 10.1021/acsami.8b10138 – ident: ref50/cit50 doi: 10.1039/C8TC01691G – ident: ref6/cit6 doi: 10.1088/0957-4484/18/34/345202 – ident: ref46/cit46 doi: 10.1021/am506987w – ident: ref15/cit15 doi: 10.1021/nn901903b – ident: ref8/cit8 doi: 10.1021/nn3026172 – ident: ref48/cit48 doi: 10.1002/adma.201200359 – ident: ref41/cit41 doi: 10.1021/acsami.7b19173 – ident: ref5/cit5 doi: 10.1002/adma.200901141 – ident: ref27/cit27 doi: 10.1039/C7NR09570H – ident: ref23/cit23 doi: 10.1002/admt.201900196 – ident: ref3/cit3 doi: 10.1002/adma.200801788 – ident: ref42/cit42 doi: 10.1039/C5TC04364F – ident: ref10/cit10 doi: 10.1002/adma.201201948 – ident: ref22/cit22 doi: 10.1021/nn501204t – ident: ref43/cit43 doi: 10.1021/acsnano.6b04830 – ident: ref14/cit14 doi: 10.1021/nl9001525 – ident: ref34/cit34 doi: 10.1021/am403986f – ident: ref53/cit53 doi: 10.1002/adma.201602083 – ident: ref12/cit12 doi: 10.1002/adma.201101986 – ident: ref28/cit28 doi: 10.1002/admt.201700232 – ident: ref37/cit37 doi: 10.1021/acsami.5b06370 – ident: ref18/cit18 doi: 10.1039/C4TC01959H – ident: ref45/cit45 doi: 10.1002/adma.201600772 – ident: ref7/cit7 doi: 10.1021/acsnano.5b08137 |
SSID | ssj0063205 |
Score | 2.57213 |
Snippet | The patterning of silver nanowires (AgNWs) is subject to critical challenges, which have seriously limited their practical applications. This work describes a... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 24074 |
SubjectTerms | durability electrodes filtration heart rate nanosilver nanowires transmittance wavelengths |
Title | Facile and Efficient Patterning Method for Silver Nanowires and Its Application to Stretchable Electroluminescent Displays |
URI | http://dx.doi.org/10.1021/acsami.9b21755 https://www.ncbi.nlm.nih.gov/pubmed/32363851 https://www.proquest.com/docview/2398155929 https://www.proquest.com/docview/2440689389 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swELZYedkeGL822BgyGtKezBonTpzHqrQqkzohdUi8RbZjS4gqreb0Af567py0DFAZ72clcc533_nuviPkFJy25SnXjHOXsURqx7SLFFNlZCXgV5Ek2O88_p2OrpJf1-L68b7jeQafRz-V8TgKJ9cAnoV4RzZ5KjMMs3r9ydLmpjEPxYoQkSdMgsda0jO-WI9OyPinTmgNsgweZvixoTvygZgQC0tuzxa1PjP3L2kb__vy22SrhZm01-jFDtmw1S758A_54B65HyoDJoGqqqSDQCQB_odeBr5NvCyh4zBcmgKqpZMbLKCmYIpnyG3sw6KL2tPeY_6b1jOKOW5QA2zHooNmwA4YP6ysxyJQen7j51N15_fJ1XDwpz9i7SQGpuI0rpmFUx6nqQT4UOaK51ZiB2zmHICzTBkrtdCya3Cuus4g3FZdIbE4VQF6zKxx8SfSqWaVPSDUgUF1hmPxP475cLnQpchlJDJTAtbjh-Q7bFrRniRfhCQ5j4pmJ4t2Jw8JW_7AwrRk5jhTY7pW_sdKft7QeKyVPFnqQwEnDdMnqrKzhS-QKRGTuDx_RSYBgAQQUILM50aZVs-LOewlANwvb_rCr-Q9x9C-iy2DR6RT_13Yb4B_an0cVP8BzXsA5w |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOvB_laQSIk8vGeTkHDqt2V7u0WyG1lXoLtmNLFVW2wlmh9s_wV_hpzDjJlocWcanENZokjj2e-ZyZ-QbgNTptKzKhuRAu54nUjmsXKa6qyErEr2mSUL3zbC-bHCYfjtKjNfjW18LgIDw-yYcg_gW7QPQOr1FHnEIjhk77LMode_YVz2j-_XQbF_SNEOPRwdaEd20EuIqzuOEWVTTOMom-ryqUKKyk8s3cOUQWuTJW6lTLgaGm4DrHs6IapJIyKxVCn9waF-Nzr8BVRD6CTnfDrf3e1GexCDmSUZEkHO9JelbIP8ZLvs_4X33fCkAbHNv4FnxfTknIZ_m8uWj0pjn_jS3yP56z23CzA9Vs2O6CO7Bm67tw4yeqxXtwPlYGDSBTdcVGgTYDvS37GNhF6dcQm4VW2gwxPNs_pnRxho5nTkzOPtw0bTwbXkT7WTNnFNFHpafiMzZq2wmhqac6Akp5ZdvH_vREnfn7cHgpH_8A1ut5bR8Bc-g-nBFU6kBNTVyR6iotZJTmpkJkKzbgFS5S2dkNX4aUABGV7cqV3cptAO_1pjQddTt1EDlZKf92KX_akpaslHzZq2GJdoWCRaq284UviReSQtai-ItMgnAQAa9EmYetDi_fFwucS4Tzj__pC1_AtcnBbLfcne7tPIHrgn5qDKhY8imsN18W9hkiv0Y_D7uPwafLVt0fS-JgEQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIiF64P0oTyNAnFw2zss5cFh1d9WltKpUKvUWbMeWqlbZFc4KtX-Hv8IPY8ZJlpcWcanENZq87PHMZ8_MNwCv0GlbkQnNhXA5T6R2XLtIcVVFViJ-TZOE6p339rOdo-T9cXq8Bl_7Whj8CI9P8iGIT6t6XrmOYSB6i9epK06hEUenfSblrj3_gvs0_246wkl9LcRk_HF7h3etBLiKs7jhFtU0zjKJ_q8qlCispBLO3DlEF7kyVupUy4GhxuA6x_2iGqSSsisVwp_cGhfjc6_AVYoR0g5vuH3Ym_ssFiFPMiqShOM9Sc8M-cf3kv8z_lf_twLUBuc2uQnflsMSclpOtxaN3jIXvzFG_ufjdgtudOCaDdvVcBvWbH0HNn6iXLwLFxNl0BAyVVdsHOgz0Ouyg8AySkdEbC-01GaI5dnhCaWNM3RAM2J09uGmaePZ8EfUnzUzRpF9VH4qQmPjtq0QmnyqJ6DUVzY68fMzde7vwdGl_Px9WK9ntX0IzKEbcUZQyQM1N3FFqqu0kFGamwoRrtiElzhJZWc_fBlSA0RUtjNXdjO3CbzXndJ0FO7USeRspfybpfy8JS9ZKfmiV8US7QsFjVRtZwtfEj8kha5F8ReZBGEhAl-JMg9aPV6-LxY4lgjrH_3THz6HawejSflhur_7GK4LOtsYUM3kE1hvPi_sUwSAjX4WFiCDT5etud8B9QhilA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+and+Efficient+Patterning+Method+for+Silver+Nanowires+and+Its+Application+to+Stretchable+Electroluminescent+Displays&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Lin%2C+Yong&rft.au=Yuan%2C+Wei&rft.au=Ding%2C+Chen&rft.au=Chen%2C+Shulin&rft.date=2020-05-27&rft.eissn=1944-8252&rft.volume=12&rft.issue=21&rft.spage=24074&rft_id=info:doi/10.1021%2Facsami.9b21755&rft_id=info%3Apmid%2F32363851&rft.externalDocID=32363851 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |