Facile and Efficient Patterning Method for Silver Nanowires and Its Application to Stretchable Electroluminescent Displays
The patterning of silver nanowires (AgNWs) is subject to critical challenges, which have seriously limited their practical applications. This work describes a simple and efficient method combining screen printing with vacuum filtration for patterning AgNW networks. The screen-printed poly(dimethyls...
Saved in:
Published in | ACS applied materials & interfaces Vol. 12; no. 21; pp. 24074 - 24085 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
27.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The patterning of silver nanowires (AgNWs) is subject to critical challenges, which have seriously limited their practical applications. This work describes a simple and efficient method combining screen printing with vacuum filtration for patterning AgNW networks. The screen-printed poly(dimethylsiloxane) (PDMS) mask layer was shown to be strongly adhered to the filtration membrane, which resulted in well-defined sharp edges of the deposited AgNW patterns, and a 50 μm patterning resolution was achieved. The patterned films with low densities of AgNWs (≤15 μg/cm2) were transferred to the surface of PDMS to make patterned stretchable transparent conductive films (TCFs). The low sheet resistance of 7.3 Ω/sq was achieved at an optical transmittance of 79.6% (at 550 nm wavelength) with a AgNW deposition density of only 12.5 μg/cm2. As an application example, the patterned TCFs were used as the top electrodes to fabricate stretchable alternating current electroluminescent (ACEL) displays with stretchability up to 70% of their original dimension, which were applied to a smart system for simulating heart beats together with a digitally operated flexible circuit. The ACEL device exhibited a bright and uniform emission with a clear and smooth edge even with a pattern width as narrow as 100 μm, as well as exceptional elasticity and durability in spite of bending, stretching, and twisting. The present work provides a new way of patterning AgNWs and can be extended to a variety of applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1944-8244 1944-8252 1944-8252 |
DOI: | 10.1021/acsami.9b21755 |