Design and Mechanistic Study of Highly Durable Carbon-Coated Cobalt Diphosphide Core–Shell Nanostructure Electrocatalysts for the Efficient and Stable Oxygen Evolution Reaction
The facile synthesis of hierarchically functional, catalytically active, and electrochemically stable nanostructures holds a tremendous promise for catalyzing the efficient and durable oxygen evolution reaction (OER) and yet remains a formidable challenge. Herein, we report the scalable production o...
Saved in:
Published in | ACS applied materials & interfaces Vol. 11; no. 23; pp. 20752 - 20761 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
12.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The facile synthesis of hierarchically functional, catalytically active, and electrochemically stable nanostructures holds a tremendous promise for catalyzing the efficient and durable oxygen evolution reaction (OER) and yet remains a formidable challenge. Herein, we report the scalable production of core–shell nanostructures composed of carbon-coated cobalt diphosphide nanosheets, C@CoP2, via three simple steps: (i) electrochemical deposition of Co species, (ii) gas-phase phosphidation, and (iii) carbonization of CoP2 for catalytic durability enhancement. Electrochemical characterizations showed that C@CoP2 delivers an overpotential of 234 mV, retains its initial activity for over 80 h of continuous operation, and exhibits a fast OER rate of 63.8 mV dec–1 in base. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1944-8244 1944-8252 1944-8252 |
DOI: | 10.1021/acsami.9b01847 |