Peptide Supramolecular Hydrogels with Sustained Release Ability for Combating Multidrug-Resistant Bacteria
Chronic wound infection caused by multidrug-resistant bacteria is a major threat globally, leading to high mortality rates and a considerable economic burden. To address it, an innovative supramolecular nanofiber hydrogel (Hydrogel-RL) harboring antimicrobial peptides was developed based on the nove...
Saved in:
Published in | ACS applied materials & interfaces Vol. 15; no. 22; pp. 26273 - 26284 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
07.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Chronic wound infection caused by multidrug-resistant bacteria is a major threat globally, leading to high mortality rates and a considerable economic burden. To address it, an innovative supramolecular nanofiber hydrogel (Hydrogel-RL) harboring antimicrobial peptides was developed based on the novel arginine end-tagging peptide (Pep 6) from our recent study, triggering cross-linking. In vitro results demonstrated that Hydrogel-RL can sustain the release of Pep 6 up to 120 h profiles, which is biocompatible and exhibits superior activity for methicillin-resistant Staphylococcus aureus (MRSA) biofilm inhibition and elimination. A single treatment of supramolecular Hydrogel-RL on an MRSA skin infection model revealed formidable antimicrobial activity and therapeutic effects in vivo. In the chronic wound infection model, Hydrogel-RL promoted mouse skin cell proliferation, reduced inflammation, accelerated re-epithelialization, and regulated muscle and collagen fiber formation, rapidly healing full-thickness skin wounds. To show its vehicle property for wound infection combined therapy, etamsylate, an antihemorrhagic drug, was loaded into the porous network of Hydrogel-RL, which demonstrated improved hemostatic activity. Collectively, Hydrogel-RL is a promising clinical candidate agent for functional supramolecular biomaterials designed for combating multidrug-resistant bacteria and rescuing stalled healing in chronic wound infections. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1944-8244 1944-8252 1944-8252 |
DOI: | 10.1021/acsami.3c01453 |