Construction of Artificial Controllable Aggregation Trojan Horse-Like Nanoplatform for Enhanced NIR-II Photothermal Therapy

Promoting the aggregation of nanoprobes at tumor sites and realizing precise imaging and treatment of tumors is still one of the important problems to be solved in the field of nanomedicine. Poly-2-phenylbenzobisthiazole (PB) is a novel conjugated polymer with good biocompatibility, excellent photot...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 15; no. 4; pp. 4903 - 4910
Main Authors Meng, Jian, Wang, Lei, Wang, Qian, Zou, Bocheng, Ren, Shilei, Xin, Lei, Gao, Jinfang, Zhang, Ruiping
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Promoting the aggregation of nanoprobes at tumor sites and realizing precise imaging and treatment of tumors is still one of the important problems to be solved in the field of nanomedicine. Poly-2-phenylbenzobisthiazole (PB) is a novel conjugated polymer with good biocompatibility, excellent photothermal properties in the second near-infrared region (NIR-II), but poor water dispersibility. Herein, a novel self-assembly/polymerization two-in-one strategy was proposed to prepare a new family of poly-2-phenyl-benzobisthiazole-based nanoparticles. Because the hydrophobic polymer PB was well “camouflaged” in the hydrophilic polyphenol–metal networks, the prepared “Trojan horse-like” nanoparticle TF-PB exhibited good water dispersibility. Besides, TF-PB can play a role as a contrast agent for photoacoustic and magnetic resonance dual-modality imaging. When deferoxamine was artificially applied and interacted with TF-PB, the polyphenol–metal networks disintegrated and the hydrophobic material PB was exposed and started hydrophobic aggregation. Thus, it can be applied for precise enhanced photothermal therapy (PTT) in the NIR-II. Meanwhile, the aggregation process enabled non-invasive, fast, and accurate real-time monitoring by self-enhancing photoacoustic imaging. This work has realized the artificially controllable aggregation of photothermal materials in the tumor site, solved the limitations of traditional PTT, and also has good application prospects in clinical therapy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.2c18364