A Sequentially Responsive Nanosystem Breaches Cascaded Bio-barriers and Suppresses P‑Glycoprotein Function for Reversing Cancer Drug Resistance

Cancer chemotherapy is challenged by multidrug resistance (MDR) mainly attributed to overexpressed transmembrane efflux pump P-glycoprotein (P-gp) in cancer cells. Improving drug delivery efficacy while co-delivering P-gp inhibitors to suppress drug efflux is an often-used nanostrategy for combating...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 12; no. 49; pp. 54343 - 54355
Main Authors Liu, Jia, Zhao, Lei, Shi, Lin, Yuan, Ye, Fu, Daan, Ye, Zhilan, Li, Qilin, Deng, Yan, Liu, Xingxin, Lv, Qiying, Cheng, Yanni, Xu, Yunruo, Jiang, Xulin, Wang, Guobin, Wang, Lin, Wang, Zheng
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 09.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cancer chemotherapy is challenged by multidrug resistance (MDR) mainly attributed to overexpressed transmembrane efflux pump P-glycoprotein (P-gp) in cancer cells. Improving drug delivery efficacy while co-delivering P-gp inhibitors to suppress drug efflux is an often-used nanostrategy for combating MDR, which is however challenged by cascaded bio-barriers en route to cancer cells and P-gp inhibitors’ adverse effects. To effectively breach the cascaded bio-barriers while avoiding P-gp inhibitors’ adverse effects, a stealthy, sequentially responsive doxorubicin (DOX) delivery nanosystem (RCMSNs) is fabricated, composed of an extracellular-tumor-acidity-responsive polymer shell (PEG-b-PLLDA), pH/redox dual-responsive mesoporous silica nanoparticle-based carriers (MSNs-SS-Py), and cationic β-cyclodextrin-PEI (CD-PEI) gatekeepers. The PEG-b-PLLDA corona makes RCMSNs stealthy with prolonged blood circulation time. Once tumors are reached, extracellular acidity degrades PEG-b-PLLDA, reversing nanosystem’s surface charges to be positive, which drastically improves RCMSNs’ tumor accumulation, penetration, and cellular internalization. Within cancer cells, CD-PEI gatekeepers detach to allow DOX unloading in response to intracellular acidity and glutathione and functionally act as a P-gp inhibitor, dampening P-gp’s efflux activity by impairing ATP production. Thus, the resultant high-efficacy drug delivery along with reduced P-gp function cooperatively reverses MDR in vitro. Importantly, in preclinical tumor models, DOX@RCMSNs potently suppress MDR tumor growth without eliciting systemic toxicity, demonstrating their potential of clinical translation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.0c13852