Discovery of Intermediates of lacZ β‑Galactosidase Catalyzed Hydrolysis Using dDNP NMR
Using dissolution dynamic nuclear polarization, the sensitivity of single scan solution state 13C NMR can be improved up to 4 orders of magnitude. In this study, the enzyme lacZ β-galactosidase from Escherichia coli was subjected to hyperpolarized substrate, and previously unknown reaction intermedi...
Saved in:
Published in | Journal of the American Chemical Society Vol. 140; no. 8; pp. 3030 - 3034 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.02.2018
|
Online Access | Get full text |
Cover
Loading…
Summary: | Using dissolution dynamic nuclear polarization, the sensitivity of single scan solution state 13C NMR can be improved up to 4 orders of magnitude. In this study, the enzyme lacZ β-galactosidase from Escherichia coli was subjected to hyperpolarized substrate, and previously unknown reaction intermediates were observed, including a 1,1-linked disaccharide. The enzyme is known for making 1,6-transglycosylation, producing products like allolactose, that are also substrates. To analyze the kinetics, a simple kinetic model was developed and used to determine relative transglycosylation and hydrolysis rates of each of the intermediates, and the novel transglycosylation intermediates were determined as better substrates than the 1,6-linked one, explaining their transient nature. These findings suggest that hydrolysis and transglycosylation might be more complex than previously described. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.7b13358 |