Reconstructing late Quaternary deep-water masses in the eastern Arctic Ocean using benthonic Ostracoda

The distribution of Ostracoda in three long cores from the deep eastern Arctic Ocean was studied to determine the palaeoceanographical history of the Eurasian Basin during the late Quaternary. The samples for this study were obtained from the Lomonosov Ridge, Morris Jesup Rise and Yermak Plateau dur...

Full description

Saved in:
Bibliographic Details
Published inMarine micropaleontology Vol. 37; no. 3; pp. 251 - 272
Main Authors Jones, Richard Ll, Whatley, Robin C, Cronin, Thomas M, Dowsett, Harry J
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.1999
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The distribution of Ostracoda in three long cores from the deep eastern Arctic Ocean was studied to determine the palaeoceanographical history of the Eurasian Basin during the late Quaternary. The samples for this study were obtained from the Lomonosov Ridge, Morris Jesup Rise and Yermak Plateau during the Arctic 91 expedition. Ostracoda previously studied in coretops at the same sites as the present study have shown that individual species have a strong association with different water masses and bathymetry. Throughout the late Quaternary, cores exhibit ostracod-rich layers separated by barren intervals. On the basis of biostratigraphical, isotopic and palaeomagnetic data the fossiliferous levels are interpreted as representing interglacial stages. The twenty most significant species were selected for subsequent quantitative investigation using Cluster and Factor analyses, in order to determine similarity and variance between the assemblages. An additional statistical method employing Modern Analogues and the Squared Chord Distance dissimilarity coefficient was utilised to compare the present late Quaternary fossil samples with a modern Arctic database. The results reveal a major faunal division within the Arctic Ocean Deep Water (AODW). Highly abundant and diverse assemblages within the cores were found to group and have good analogues with the Recent bathyal depth (1000–2500 m) upper AODW assemblages. Conversely, assemblages with low abundance and diversity correlate well with abyssal depth (>3000 m) lower AODW assemblages. The palaeoceanographical history is complicated by the influence of adjacent water masses such as Canada Basin Deep Water (CBDW), Greenland Sea Deep Water (GSDW) and most importantly, Arctic Intermediate Water (AIW), which all had an influence on the ostracod assemblages during the late Quaternary. An enhanced flow of warm saline AIW into the Eurasian Basin results in species-rich upper AODW assemblages having good analogues down to 2750 m in the water column. In contrast, lower AODW assemblages influenced by cold well-oxygenated GSDW give analogues at depths as shallow as 1000 m. The faunal changes are the consequence of rapid climatic fluctuations in the eastern Arctic Ocean during the late Quaternary that are intrinsically linked to palaeoceanographical alternations in warm and cold current inflow from adjacent basins.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0377-8398
1872-6186
DOI:10.1016/S0377-8398(99)00022-5