An experimental study of dissolution–reprecipitation in fluorapatite: fluid infiltration and the formation of monazite

In a series of timed experiments, monazite inclusions are induced to form in the Durango fluorapatite using 1 and 2 N HCl and H2SO4 solutions at temperatures of 300, 600, and 900 degrees C and pressures of 500 and 1,000 MPa. The monazite inclusions form only in reacted areas, i.e. depleted in (Y+REE...

Full description

Saved in:
Bibliographic Details
Published inContributions to mineralogy and petrology Vol. 150; no. 3; pp. 268 - 286
Main Authors Harlov, Daniel E., Wirth, Richard, Förster, Hans-Jürgen
Format Journal Article
LanguageEnglish
Published Heidelberg Springer Nature B.V 01.10.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In a series of timed experiments, monazite inclusions are induced to form in the Durango fluorapatite using 1 and 2 N HCl and H2SO4 solutions at temperatures of 300, 600, and 900 degrees C and pressures of 500 and 1,000 MPa. The monazite inclusions form only in reacted areas, i.e. depleted in (Y+REE)+Si+Na+S+Cl. In the HCl experiments, the reaction front between the reacted and unreacted regions is sharp, whereas in the H2SO4 experiments it ranges from sharp to diffuse. In the 1 N HCl experiments, Ostwald ripening of the monazite inclusions took place both as a function of increased reaction time as well as increased temperature and pressure. Monazite growth was more sluggish in the H2SO4 experiments. Transmission electron microscopic (TEM) investigation of foils cut across the reaction boundary in a fluorapatite from the 1 N HCl experiment (600 degrees C and 500 MPa) indicate that the reacted region along the reaction front is characterized by numerous, sub-parallel, 10-20 nm diameter nano-channels. TEM investigation of foils cut from a reacted region in a fluorapatite from the 1 N H2SO4 experiment at 900 degrees C and 1,000 MPa indicates a pervasive nano-porosity, with the monazite inclusions being in direct contact with the surrounding fluorapatite. For either set of experiments, reacted areas in the fluorapatite are interpreted as replacement reactions, which proceed via a moving interface or reaction front associated with what is essentially a simultaneous dissolution-reprecipitation process. The formation of a micro- and nano-porosity in the metasomatised regions of the fluorapatite allows fluids to permeate the reacted areas. This permits rapid mass transfer in the form of fluid-aided diffusion of cations to and from the growing monazite inclusions. Nano-channels and nano-pores also serve as sites for nucleation and the subsequent growth of the monazite inclusions. [PUBLICATION ABSTRACT]
ISSN:0010-7999
1432-0967
DOI:10.1007/s00410-005-0017-8