Direct Covalent Grafting of Conjugated Molecules onto Si, GaAs, and Pd Surfaces from Aryldiazonium Salts

Using aryldiazonium salts that are air-stable and easily synthesized, we describe here a one-step, room-temperature route to direct covalent bonds between π-conjugated organic molecules on three material surfaces:  Si, GaAs, and Pd. The Si can be in the form of single crystal Si including heavily do...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 126; no. 1; pp. 370 - 378
Main Authors Stewart, Michael P, Maya, Francisco, Kosynkin, Dmitry V, Dirk, Shawn M, Stapleton, Joshua J, McGuiness, Christine L, Allara, David L, Tour, James M
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 14.01.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Using aryldiazonium salts that are air-stable and easily synthesized, we describe here a one-step, room-temperature route to direct covalent bonds between π-conjugated organic molecules on three material surfaces:  Si, GaAs, and Pd. The Si can be in the form of single crystal Si including heavily doped p-type Si, intrinsic Si, heavily doped n-type Si, on Si(111) and Si(100), and on n-type polycrystalline Si. The formation of the aryl−metal or aryl−semiconductor bond attachments was confirmed by corroborating evidence from ellipsometry, reflectance FTIR, XPS, cyclic voltammetry, and AFM analyses of the surface-grafted monolayers. A data-encompassing explanation for the mechanism suggests a diazonium activation by reduction at the open circuit potential, with aryl radical secondary products bonding to the surface. The synthetic details are included for preparing the surface-grafted monolayers and the precursor diazonium salts. This spontaneous diazonium activation reaction offers an attractive route to highly passivating, robust monolayers and multilayers on many surfaces that allow for strong bonds between carbon and surface atoms with molecular species that are near perpendicular to the surface.
Bibliography:istex:81BD83F4D99CEDABBCD176279D349514D7CDA648
ark:/67375/TPS-R0BV39FC-V
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
DOI:10.1021/ja0383120