Bed geometry used to test recognition criteria of turbidites and (sandy) debrites

The origin of thick-bedded deep-water sandstones has generated much controversy in recent years. Two fundamentally different models have been proposed for beds with the same internal sedimentary characteristics: (1) progressive particle settling from the base of a turbulent flow—the “turbidity curre...

Full description

Saved in:
Bibliographic Details
Published inSedimentary geology Vol. 179; no. 1; pp. 163 - 174
Main Authors Amy, L.A., Talling, P.J., Peakall, J., Wynn, R.B., Arzola Thynne, R.G.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The origin of thick-bedded deep-water sandstones has generated much controversy in recent years. Two fundamentally different models have been proposed for beds with the same internal sedimentary characteristics: (1) progressive particle settling from the base of a turbulent flow—the “turbidity current” model and (2) en-masse freezing of a higher-concentration flow—the “sandy debris flow” model. These models predict beds with very different geometries; turbidites thin gradually whereas debrites have abrupt terminations. Previous studies have relied upon sedimentary recognition criteria (i.e., sedimentary features in small-scale outcrop or core) to interpret depositional mechanism. In this study, depositional mechanism is deduced from bed geometry gained from extensive correlations of individual sandstones preserved in a classic turbidite system (Marnoso-arenacea Formation, Italy). This approach allows recognition criteria for turbidites and submarine debrites to be independently tested. We find that tabular and tapered sandstones (turbidites) have distinctly different internal characteristics to beds with abrupt margins (debrites). Turbidites are relatively well sorted, often exhibit grading and traction structures and have relatively low matrix mud contents. They may also contain massive division, floating clasts and inverse grading. Debrites are moderate-to-poorly sorted, ungraded, structureless, contain floating clasts and have elevated matrix mud contents. These findings have implications for the assessment of submarine gravity flows deposits and reservoir rock characterization.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0037-0738
1879-0968
DOI:10.1016/j.sedgeo.2005.04.007