Solvolysis of Sugarcane Bagasse: Strategy To Increase the Yields of Secondary Fuel Precursors

Low-temperature depolymerization of biomass sugars is a less capital-intensive way to produce secondary fuel precursors. Solvolysis of bagasse using polyol cosolvents reduces sugar dehydration and limits unwanted side reactions. Ethylene glycol (EG) as cosolvent (50 v/v%) was found to increase formi...

Full description

Saved in:
Bibliographic Details
Published inIndustrial & engineering chemistry research Vol. 58; no. 38; pp. 17736 - 17745
Main Authors Rackemann, Darryn W, Bartley, John P, Doherty, William O. S
Format Journal Article
LanguageEnglish
Published American Chemical Society 25.09.2019
Online AccessGet full text

Cover

Loading…
More Information
Summary:Low-temperature depolymerization of biomass sugars is a less capital-intensive way to produce secondary fuel precursors. Solvolysis of bagasse using polyol cosolvents reduces sugar dehydration and limits unwanted side reactions. Ethylene glycol (EG) as cosolvent (50 v/v%) was found to increase formic acid, levulinates, and furfural yields from 71 to 100 mol %, 59 to 70 mol %, and 44 to 59 mol %, respectively, based on the theoretical yield of the cellulose component of bagasse. The exceptionally high formic acid yield is attributed to it being produced not only from cellulose but also via hemicellulose and EG conversion pathways. Increasing concentrations of EG proportionally reduced furfural yield. Delignification of bagasse prior to solvolysis with 50 v/v% EG decreased the yields of both formic acid (84 mol %) and furfural (52%) but increased the levulinates yield to 80 mol %.
ISSN:0888-5885
1520-5045
DOI:10.1021/acs.iecr.9b03711