Morphology-Conserving Non-Kirkendall Anion Exchange of Metal Oxide Nanocrystals
Nanoscale dynamic processes such as the diffusion of ions within solid-state structures are critical for understanding and tuning material properties in a wide range of areas, such as energy storage and conversion, catalysis, and optoelectronics. In the generation of new types of nanocrystals (NCs),...
Saved in:
Published in | Journal of the American Chemical Society Vol. 142; no. 20; pp. 9130 - 9134 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
20.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanoscale dynamic processes such as the diffusion of ions within solid-state structures are critical for understanding and tuning material properties in a wide range of areas, such as energy storage and conversion, catalysis, and optoelectronics. In the generation of new types of nanocrystals (NCs), diffusion-mediated ion exchange reactions have also been proposed as one of the most effective transformational strategies. However, retaining the original morphology and crystal structure of metal oxide NCs has been challenging because of Kirkendall void formation, and there has been no success, especially for anion exchange. Here we show that with the aid of an oxygen extracting reagent (OER), anion diffusion is dramatically accelerated and morphology-conserving anion exchange without Kirkendall void formation is possible. In the case of the conversion of Fe3O4 to Fe3S4, oxygen extraction and subsequent formation of the amorphous phase facilitate the migration of incoming sulfur anions by approximately 100-fold, which is close to the level of the outgoing cation diffusivity. We also demonstrate that the working principle of the morphology-conserving non-Kirkendall anion exchange is operative for metal oxide NCs with different shapes and crystal structures. |
---|---|
AbstractList | Nanoscale dynamic processes such as the diffusion of ions within solid-state structures are critical for understanding and tuning material properties in a wide range of areas, such as energy storage and conversion, catalysis, and optoelectronics. In the generation of new types of nanocrystals (NCs), diffusion-mediated ion exchange reactions have also been proposed as one of the most effective transformational strategies. However, retaining the original morphology and crystal structure of metal oxide NCs has been challenging because of Kirkendall void formation, and there has been no success, especially for anion exchange. Here we show that with the aid of an oxygen extracting reagent (OER), anion diffusion is dramatically accelerated and morphology-conserving anion exchange without Kirkendall void formation is possible. In the case of the conversion of Fe3O4 to Fe3S4, oxygen extraction and subsequent formation of the amorphous phase facilitate the migration of incoming sulfur anions by approximately 100-fold, which is close to the level of the outgoing cation diffusivity. We also demonstrate that the working principle of the morphology-conserving non-Kirkendall anion exchange is operative for metal oxide NCs with different shapes and crystal structures.Nanoscale dynamic processes such as the diffusion of ions within solid-state structures are critical for understanding and tuning material properties in a wide range of areas, such as energy storage and conversion, catalysis, and optoelectronics. In the generation of new types of nanocrystals (NCs), diffusion-mediated ion exchange reactions have also been proposed as one of the most effective transformational strategies. However, retaining the original morphology and crystal structure of metal oxide NCs has been challenging because of Kirkendall void formation, and there has been no success, especially for anion exchange. Here we show that with the aid of an oxygen extracting reagent (OER), anion diffusion is dramatically accelerated and morphology-conserving anion exchange without Kirkendall void formation is possible. In the case of the conversion of Fe3O4 to Fe3S4, oxygen extraction and subsequent formation of the amorphous phase facilitate the migration of incoming sulfur anions by approximately 100-fold, which is close to the level of the outgoing cation diffusivity. We also demonstrate that the working principle of the morphology-conserving non-Kirkendall anion exchange is operative for metal oxide NCs with different shapes and crystal structures. Nanoscale dynamic processes such as the diffusion of ions within solid-state structures are critical for understanding and tuning material properties in a wide range of areas, such as energy storage and conversion, catalysis, and optoelectronics. In the generation of new types of nanocrystals (NCs), diffusion-mediated ion exchange reactions have also been proposed as one of the most effective transformational strategies. However, retaining the original morphology and crystal structure of metal oxide NCs has been challenging because of Kirkendall void formation, and there has been no success, especially for anion exchange. Here we show that with the aid of an oxygen extracting reagent (OER), anion diffusion is dramatically accelerated and morphology-conserving anion exchange without Kirkendall void formation is possible. In the case of the conversion of Fe3O4 to Fe3S4, oxygen extraction and subsequent formation of the amorphous phase facilitate the migration of incoming sulfur anions by approximately 100-fold, which is close to the level of the outgoing cation diffusivity. We also demonstrate that the working principle of the morphology-conserving non-Kirkendall anion exchange is operative for metal oxide NCs with different shapes and crystal structures. Nanoscale dynamic processes such as the diffusion of ions within solid-state structures are critical for understanding and tuning material properties in a wide range of areas, such as energy storage and conversion, catalysis, and optoelectronics. In the generation of new types of nanocrystals (NCs), diffusion-mediated ion exchange reactions have also been proposed as one of the most effective transformational strategies. However, retaining the original morphology and crystal structure of metal oxide NCs has been challenging because of Kirkendall void formation, and there has been no success, especially for anion exchange. Here we show that with the aid of an oxygen extracting reagent (OER), anion diffusion is dramatically accelerated and morphology-conserving anion exchange without Kirkendall void formation is possible. In the case of the conversion of Fe₃O₄ to Fe₃S₄, oxygen extraction and subsequent formation of the amorphous phase facilitate the migration of incoming sulfur anions by approximately 100-fold, which is close to the level of the outgoing cation diffusivity. We also demonstrate that the working principle of the morphology-conserving non-Kirkendall anion exchange is operative for metal oxide NCs with different shapes and crystal structures. Nanoscale dynamic processes such as the diffusion of ions within solid-state structures are critical for understanding and tuning material properties in a wide range of areas, such as energy storage and conversion, catalysis, and optoelectronics. In the generation of new types of nanocrystals (NCs), diffusion-mediated ion exchange reactions have also been proposed as one of the most effective transformational strategies. However, retaining the original morphology and crystal structure of metal oxide NCs has been challenging because of Kirkendall void formation, and there has been no success, especially for anion exchange. Here we show that with the aid of an oxygen extracting reagent (OER), anion diffusion is dramatically accelerated and morphology-conserving anion exchange without Kirkendall void formation is possible. In the case of the conversion of Fe O to Fe S , oxygen extraction and subsequent formation of the amorphous phase facilitate the migration of incoming sulfur anions by approximately 100-fold, which is close to the level of the outgoing cation diffusivity. We also demonstrate that the working principle of the morphology-conserving non-Kirkendall anion exchange is operative for metal oxide NCs with different shapes and crystal structures. |
Author | Lee, Chang-Hee Jun, Chul-Ho Lim, Yongjun Cheon, Jinwoo Kim, Kwanpyo |
AuthorAffiliation | Center for Nanomedicine Department of Chemistry Graduate Program of Nano Biomedical Engineering Institute for Basic Science (IBS) Department of Physics |
AuthorAffiliation_xml | – name: Department of Physics – name: Department of Chemistry – name: Graduate Program of Nano Biomedical Engineering – name: Center for Nanomedicine – name: Institute for Basic Science (IBS) |
Author_xml | – sequence: 1 givenname: Yongjun orcidid: 0000-0002-7281-7226 surname: Lim fullname: Lim, Yongjun organization: Department of Chemistry – sequence: 2 givenname: Chang-Hee surname: Lee fullname: Lee, Chang-Hee organization: Institute for Basic Science (IBS) – sequence: 3 givenname: Chul-Ho orcidid: 0000-0002-5578-2228 surname: Jun fullname: Jun, Chul-Ho organization: Institute for Basic Science (IBS) – sequence: 4 givenname: Kwanpyo orcidid: 0000-0001-8497-2330 surname: Kim fullname: Kim, Kwanpyo organization: Department of Physics – sequence: 5 givenname: Jinwoo orcidid: 0000-0001-8948-5929 surname: Cheon fullname: Cheon, Jinwoo email: jcheon@yonsei.ac.kr organization: Department of Chemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32392048$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0TtPwzAQB3ALgegDNmaUkYGU8yOvsarKQ_SxwBxdY6dNSe1ip6j99rhqYUAgppNPv7Ps_3XIqTZaEXJFoUeB0bslFq4HBXDG4YS0acQgjCiLT0kbAFiYpDFvkY5zS38ULKXnpOVtxkCkbTIdG7temNrMd-HAaKfsR6XnwcTo8Lmyb0pLrOugryujg-G2WKCeq8CUwVg1WAfTbSVVMEFtCrtzvuMuyFnpi7o81i55vR--DB7D0fThadAfhcijpAnLmMdUIgPgmUpTKUs5ozNkZRqBLGmJAlOESMUUUWaCUYQkE_5rBY8zP8u75OZw79qa941yTb6qXKHqGrUyG5eziAnOkkiI_6kAmnIOSeTp9ZFuZisl87WtVmh3-VdeHtweQGGNc1aV34RCvl9Hvl9HflyH5-wHL6oGGx9mY7Gq_xo6vnffXJqN1T7I3-kn7G-Z9w |
CitedBy_id | crossref_primary_10_1021_acs_inorgchem_2c04467 crossref_primary_10_2139_ssrn_3986052 crossref_primary_10_1002_anie_202418248 crossref_primary_10_1007_s40820_024_01378_5 crossref_primary_10_1021_acs_chemmater_4c01892 crossref_primary_10_1021_acs_chemmater_2c03773 crossref_primary_10_1021_acs_chemmater_2c03659 crossref_primary_10_1039_D4NR02769H crossref_primary_10_1021_acsnano_4c09844 crossref_primary_10_1002_er_8620 crossref_primary_10_1021_acs_accounts_0c00701 crossref_primary_10_1021_acsnano_0c09094 crossref_primary_10_1021_acs_accounts_0c00802 crossref_primary_10_1007_s40242_024_4072_y crossref_primary_10_1002_ange_202301802 crossref_primary_10_3390_ma15051633 crossref_primary_10_1021_acs_chemmater_0c02951 crossref_primary_10_1016_j_mattod_2024_10_010 crossref_primary_10_1039_D0NR07902B crossref_primary_10_1002_ange_202418248 crossref_primary_10_1002_ange_202309784 crossref_primary_10_1016_j_gee_2024_11_010 crossref_primary_10_1002_smll_202102892 crossref_primary_10_4019_bjscc_80_14 crossref_primary_10_1016_j_cej_2022_135230 crossref_primary_10_1021_acsami_2c16873 crossref_primary_10_1021_acs_chemmater_1c01107 crossref_primary_10_1021_acs_nanolett_3c00464 crossref_primary_10_1002_anie_202301802 crossref_primary_10_1021_jacs_4c10252 crossref_primary_10_1021_acs_inorgchem_1c03675 crossref_primary_10_1039_D0DT03940C crossref_primary_10_1002_anie_202309784 crossref_primary_10_1016_j_est_2023_106964 |
Cites_doi | 10.1021/ja508161c 10.1038/s41598-018-35915-1 10.1021/nl400325s 10.1021/ja00235a031 10.1126/science.1096566 10.1039/C2CS35369E 10.1039/C2CS35241A 10.1039/jr9610004933 10.1002/anie.201504099 10.1021/ja00440a093 10.1126/science.aad5520 10.1039/C4TA05148C 10.1016/j.nantod.2011.02.006 10.1021/om00021a054 10.1021/cm2002868 10.1021/ja312222k 10.1002/adma.201302400 10.1021/nl0340879 10.1007/BF00603390 10.1038/nmat1982 10.1021/nl104548g 10.1021/acs.chemmater.5b03911 10.1021/jacs.5b03868 10.1021/ja905732q 10.1149/1.2129108 10.1039/C4NR02025A 10.1111/j.1151-2916.1960.tb13699.x 10.1007/978-3-540-71488-0 10.1126/science.1239221 10.1021/ja0422155 10.6028/NBS.NSRDS.31 10.1038/ncomms3933 10.1126/science.1125767 10.2138/rmg.2010.72.17 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.0c03230 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 9134 |
ExternalDocumentID | 32392048 10_1021_jacs_0c03230 d17208928 |
Genre | Journal Article |
GroupedDBID | - .K2 02 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 53G AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a357t-f6361da20039e88ddfdb1ba2f850df1fa4a8a05e61aad9421a0794520c3696363 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 08:50:17 EDT 2025 Thu Jul 10 16:38:22 EDT 2025 Thu Apr 03 06:58:21 EDT 2025 Tue Jul 01 02:08:51 EDT 2025 Thu Apr 24 23:07:32 EDT 2025 Thu Aug 27 22:10:50 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a357t-f6361da20039e88ddfdb1ba2f850df1fa4a8a05e61aad9421a0794520c3696363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7281-7226 0000-0002-5578-2228 0000-0001-8497-2330 0000-0001-8948-5929 |
PMID | 32392048 |
PQID | 2401833075 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2524327544 proquest_miscellaneous_2401833075 pubmed_primary_32392048 crossref_primary_10_1021_jacs_0c03230 crossref_citationtrail_10_1021_jacs_0c03230 acs_journals_10_1021_jacs_0c03230 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-20 |
PublicationDateYYYYMMDD | 2020-05-20 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 Crank J. (ref29/cit29) 1979 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 Jost W. (ref28/cit28) 1960 ref17/cit17 ref10/cit10 ref26/cit26 Mehrer H. (ref35/cit35) 2007 ref19/cit19 Bird R. B. (ref36/cit36) 2002 ref21/cit21 ref12/cit12 ref15/cit15 Darwent B. B. (ref24/cit24) 1970 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref7/cit7 |
References_xml | – ident: ref9/cit9 doi: 10.1021/ja508161c – ident: ref37/cit37 doi: 10.1038/s41598-018-35915-1 – ident: ref17/cit17 doi: 10.1021/nl400325s – ident: ref25/cit25 doi: 10.1021/ja00235a031 – ident: ref10/cit10 doi: 10.1126/science.1096566 – ident: ref3/cit3 doi: 10.1039/C2CS35369E – ident: ref6/cit6 doi: 10.1039/C2CS35241A – ident: ref18/cit18 doi: 10.1039/jr9610004933 – ident: ref12/cit12 doi: 10.1002/anie.201504099 – ident: ref23/cit23 doi: 10.1021/ja00440a093 – ident: ref13/cit13 doi: 10.1126/science.aad5520 – ident: ref16/cit16 doi: 10.1039/C4TA05148C – ident: ref4/cit4 doi: 10.1016/j.nantod.2011.02.006 – ident: ref26/cit26 doi: 10.1021/om00021a054 – ident: ref19/cit19 doi: 10.1021/cm2002868 – ident: ref22/cit22 doi: 10.1021/ja312222k – volume-title: The Mathematics of Diffusion year: 1979 ident: ref29/cit29 – ident: ref2/cit2 doi: 10.1002/adma.201302400 – ident: ref15/cit15 doi: 10.1021/nl0340879 – ident: ref30/cit30 doi: 10.1007/BF00603390 – ident: ref27/cit27 doi: 10.1038/nmat1982 – ident: ref20/cit20 doi: 10.1021/nl104548g – volume-title: Diffusion in Solids, Liquids, Gases year: 1960 ident: ref28/cit28 – ident: ref34/cit34 doi: 10.1021/acs.chemmater.5b03911 – ident: ref7/cit7 doi: 10.1021/jacs.5b03868 – ident: ref11/cit11 doi: 10.1021/ja905732q – ident: ref31/cit31 doi: 10.1149/1.2129108 – ident: ref5/cit5 doi: 10.1039/C4NR02025A – ident: ref32/cit32 doi: 10.1111/j.1151-2916.1960.tb13699.x – volume-title: Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes year: 2007 ident: ref35/cit35 doi: 10.1007/978-3-540-71488-0 – ident: ref1/cit1 doi: 10.1126/science.1239221 – volume-title: Transport Phenomena year: 2002 ident: ref36/cit36 – ident: ref14/cit14 doi: 10.1021/ja0422155 – volume-title: Bond Dissociation Energies in Simple Molecules year: 1970 ident: ref24/cit24 doi: 10.6028/NBS.NSRDS.31 – ident: ref8/cit8 doi: 10.1038/ncomms3933 – ident: ref21/cit21 doi: 10.1126/science.1125767 – ident: ref33/cit33 doi: 10.2138/rmg.2010.72.17 |
SSID | ssj0004281 |
Score | 2.470744 |
Snippet | Nanoscale dynamic processes such as the diffusion of ions within solid-state structures are critical for understanding and tuning material properties in a wide... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9130 |
SubjectTerms | anion exchange catalytic activity cations crystal structure diffusivity energy nanocrystals oxygen sulfur |
Title | Morphology-Conserving Non-Kirkendall Anion Exchange of Metal Oxide Nanocrystals |
URI | http://dx.doi.org/10.1021/jacs.0c03230 https://www.ncbi.nlm.nih.gov/pubmed/32392048 https://www.proquest.com/docview/2401833075 https://www.proquest.com/docview/2524327544 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHODC-zFe6iQ4oU6p02TZEU0bCGlwgEm7VWmaIrSpResmDX49Th8ghgZcK6cPJ3Y-N_ZnQi4QsRoaau0CSAxQJNVoUr5yJWhmhGkBhLbeuX8vbgf-3ZAPvxJkF0_wwfID6axJNWUIllfJGgi0XwuBOo9f9Y8gvQrmtqRgZYL74mi7Aens-wa0BFXmu0tvi9xUNTpFUsmoOZuGTf3-k7LxjxffJpslwHSuixWxQ1ZMskvWO1Vftz3y0E9Rt_nfdNe267TOInl27vNWwpORwRh9jOMTnDCnOy8Kg500dvoGcbrzMH-JjIM-OdWTN0SW42yfDHrdp86tW7ZVcBXjrakbCya8SNmstLaRMoriKPRCBbHkNIq9WPlKKsqN8JSK2j54iqLRcqDa9v5jgh2QWpIm5og4iB-UERxaMWe-BkQbyo8tHY3UNq6UddJAJQSlWWRBfuINGHHYq6Vq6uSqmo9Al7zktj3GeIn05af0a8HHsUSuUU1tgPq1pyAqMeksCxDCoBtD18Z_keHgM7DcgHVyWKyLz6fh3duW7fj4H992QjbAxueUozc6JbXpZGbOEMRMw_N8BX8A-9jotQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZ4HMaF92M8OwlOqChNmi47oolpPDYOgLRblaYpQkwtWjcJ-PXYXbcJpKFdqyRNbcf53MSfAc4RsVoWGeNyrjBAUczgkvK1q7gRNrB1ziPKd-50g_aLf9eTvTJZnXJhcBI5jpQXh_gzdgGiCcKHzDCBmHkZVhGHcDLo6-bTLA2SK2-CdusqEOU997-9aR8y-e99aA64LDaZ1gZ0p9Mr7pa8X42G0ZX5_sPcuPD8N2G9hJvO9dg-tmDJpttQaU6qvO3AYydDSRf_1l0q3kmuI311ukVh4cG7xYi9j_1TVJ9z8zlOE3ayxOlYRO3O4-dbbB300JkZfCHO7Oe78NK6eW623bLIgquFrA_dJBCBF2u6o9awSsVxEkdepHmiJIsTL9G-VppJG3haxw2fe5rhEpacGaoEKAKxBytpltoDcBBNaIt6qSdS-IYj9tB-QuQ0ylCUqapQQyGE5SLJw-L8m2P8QU9L0VThcqKW0JQs5VQsoz-n9cW09ceYnWNOu9pEwyHKl85EdGqzUR4ioEGnho5O_tNGcl9wYgqswv7YPKZvw9EbxH18uMC3nUGl_dx5CB9uu_dHsMYpcmcS_dQxrAwHI3uC8GYYnRZG_QObOPEW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8xkDZeBvuAlY8tlbanKcix48R9RIWKfbRM25B4ixzHRogqQU0qsf313OWjE5WKxmtiO_b57vy7nO8O4CMiVstSY3zOFRooihkUqVD7ihthIxtznlK883gSnV2EXy_l5RoEXSwMTqLEkcraiU9SfZu5NsMApQrCF8wwgbj5GWyQx46Y-nj4618oJFdBh3hjFYn2rvtybzqLTPnwLFoBMOuDZrQFPxdTrO-X3BzNq_TI_F3K3vikNWzDyxZ2escNn7yCNZu_hhfDrtrbGzgfF0jx-h-7T0U8SYXkV96kLjA8u7FouU-xf47b6J3eNeHCXuG8sUX07p3fXWfWQ01dmNkfxJvT8i1cjE5_D8_8ttiCr4WMK99FIgoyTXfVBlapLHNZGqSaOyVZ5gKnQ600kzYKtM4GIQ80Q1GWnBmqCCgisQPreZHbd-AhqtA2kjx2UoSGIwbRoaMkNcqQtal60EciJK2wlEntB-doh9DTljQ9-NxtTWLabOVUNGO6ovWnRevbJkvHinb9bpcTpC_5RnRui3mZILBB5YYKTz7SRvJQcMoY2IPdhkUWX8PRB5QDee8_1vYBnv84GSXfv0y-7cMmJwOeSVRXB7Bezeb2EFFOlb6v-foek_PzmQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Morphology-Conserving+Non-Kirkendall+Anion+Exchange+of+Metal+Oxide+Nanocrystals&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Lim%2C+Yongjun&rft.au=Lee%2C+Chang-Hee&rft.au=Jun%2C+Chul-Ho&rft.au=Kim%2C+Kwanpyo&rft.date=2020-05-20&rft.issn=1520-5126&rft.eissn=1520-5126&rft.volume=142&rft.issue=20&rft.spage=9130&rft_id=info:doi/10.1021%2Fjacs.0c03230&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |