Morphology-Conserving Non-Kirkendall Anion Exchange of Metal Oxide Nanocrystals

Nanoscale dynamic processes such as the diffusion of ions within solid-state structures are critical for understanding and tuning material properties in a wide range of areas, such as energy storage and conversion, catalysis, and optoelectronics. In the generation of new types of nanocrystals (NCs),...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 142; no. 20; pp. 9130 - 9134
Main Authors Lim, Yongjun, Lee, Chang-Hee, Jun, Chul-Ho, Kim, Kwanpyo, Cheon, Jinwoo
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 20.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanoscale dynamic processes such as the diffusion of ions within solid-state structures are critical for understanding and tuning material properties in a wide range of areas, such as energy storage and conversion, catalysis, and optoelectronics. In the generation of new types of nanocrystals (NCs), diffusion-mediated ion exchange reactions have also been proposed as one of the most effective transformational strategies. However, retaining the original morphology and crystal structure of metal oxide NCs has been challenging because of Kirkendall void formation, and there has been no success, especially for anion exchange. Here we show that with the aid of an oxygen extracting reagent (OER), anion diffusion is dramatically accelerated and morphology-conserving anion exchange without Kirkendall void formation is possible. In the case of the conversion of Fe3O4 to Fe3S4, oxygen extraction and subsequent formation of the amorphous phase facilitate the migration of incoming sulfur anions by approximately 100-fold, which is close to the level of the outgoing cation diffusivity. We also demonstrate that the working principle of the morphology-conserving non-Kirkendall anion exchange is operative for metal oxide NCs with different shapes and crystal structures.
AbstractList Nanoscale dynamic processes such as the diffusion of ions within solid-state structures are critical for understanding and tuning material properties in a wide range of areas, such as energy storage and conversion, catalysis, and optoelectronics. In the generation of new types of nanocrystals (NCs), diffusion-mediated ion exchange reactions have also been proposed as one of the most effective transformational strategies. However, retaining the original morphology and crystal structure of metal oxide NCs has been challenging because of Kirkendall void formation, and there has been no success, especially for anion exchange. Here we show that with the aid of an oxygen extracting reagent (OER), anion diffusion is dramatically accelerated and morphology-conserving anion exchange without Kirkendall void formation is possible. In the case of the conversion of Fe3O4 to Fe3S4, oxygen extraction and subsequent formation of the amorphous phase facilitate the migration of incoming sulfur anions by approximately 100-fold, which is close to the level of the outgoing cation diffusivity. We also demonstrate that the working principle of the morphology-conserving non-Kirkendall anion exchange is operative for metal oxide NCs with different shapes and crystal structures.Nanoscale dynamic processes such as the diffusion of ions within solid-state structures are critical for understanding and tuning material properties in a wide range of areas, such as energy storage and conversion, catalysis, and optoelectronics. In the generation of new types of nanocrystals (NCs), diffusion-mediated ion exchange reactions have also been proposed as one of the most effective transformational strategies. However, retaining the original morphology and crystal structure of metal oxide NCs has been challenging because of Kirkendall void formation, and there has been no success, especially for anion exchange. Here we show that with the aid of an oxygen extracting reagent (OER), anion diffusion is dramatically accelerated and morphology-conserving anion exchange without Kirkendall void formation is possible. In the case of the conversion of Fe3O4 to Fe3S4, oxygen extraction and subsequent formation of the amorphous phase facilitate the migration of incoming sulfur anions by approximately 100-fold, which is close to the level of the outgoing cation diffusivity. We also demonstrate that the working principle of the morphology-conserving non-Kirkendall anion exchange is operative for metal oxide NCs with different shapes and crystal structures.
Nanoscale dynamic processes such as the diffusion of ions within solid-state structures are critical for understanding and tuning material properties in a wide range of areas, such as energy storage and conversion, catalysis, and optoelectronics. In the generation of new types of nanocrystals (NCs), diffusion-mediated ion exchange reactions have also been proposed as one of the most effective transformational strategies. However, retaining the original morphology and crystal structure of metal oxide NCs has been challenging because of Kirkendall void formation, and there has been no success, especially for anion exchange. Here we show that with the aid of an oxygen extracting reagent (OER), anion diffusion is dramatically accelerated and morphology-conserving anion exchange without Kirkendall void formation is possible. In the case of the conversion of Fe3O4 to Fe3S4, oxygen extraction and subsequent formation of the amorphous phase facilitate the migration of incoming sulfur anions by approximately 100-fold, which is close to the level of the outgoing cation diffusivity. We also demonstrate that the working principle of the morphology-conserving non-Kirkendall anion exchange is operative for metal oxide NCs with different shapes and crystal structures.
Nanoscale dynamic processes such as the diffusion of ions within solid-state structures are critical for understanding and tuning material properties in a wide range of areas, such as energy storage and conversion, catalysis, and optoelectronics. In the generation of new types of nanocrystals (NCs), diffusion-mediated ion exchange reactions have also been proposed as one of the most effective transformational strategies. However, retaining the original morphology and crystal structure of metal oxide NCs has been challenging because of Kirkendall void formation, and there has been no success, especially for anion exchange. Here we show that with the aid of an oxygen extracting reagent (OER), anion diffusion is dramatically accelerated and morphology-conserving anion exchange without Kirkendall void formation is possible. In the case of the conversion of Fe₃O₄ to Fe₃S₄, oxygen extraction and subsequent formation of the amorphous phase facilitate the migration of incoming sulfur anions by approximately 100-fold, which is close to the level of the outgoing cation diffusivity. We also demonstrate that the working principle of the morphology-conserving non-Kirkendall anion exchange is operative for metal oxide NCs with different shapes and crystal structures.
Nanoscale dynamic processes such as the diffusion of ions within solid-state structures are critical for understanding and tuning material properties in a wide range of areas, such as energy storage and conversion, catalysis, and optoelectronics. In the generation of new types of nanocrystals (NCs), diffusion-mediated ion exchange reactions have also been proposed as one of the most effective transformational strategies. However, retaining the original morphology and crystal structure of metal oxide NCs has been challenging because of Kirkendall void formation, and there has been no success, especially for anion exchange. Here we show that with the aid of an oxygen extracting reagent (OER), anion diffusion is dramatically accelerated and morphology-conserving anion exchange without Kirkendall void formation is possible. In the case of the conversion of Fe O to Fe S , oxygen extraction and subsequent formation of the amorphous phase facilitate the migration of incoming sulfur anions by approximately 100-fold, which is close to the level of the outgoing cation diffusivity. We also demonstrate that the working principle of the morphology-conserving non-Kirkendall anion exchange is operative for metal oxide NCs with different shapes and crystal structures.
Author Lee, Chang-Hee
Jun, Chul-Ho
Lim, Yongjun
Cheon, Jinwoo
Kim, Kwanpyo
AuthorAffiliation Center for Nanomedicine
Department of Chemistry
Graduate Program of Nano Biomedical Engineering
Institute for Basic Science (IBS)
Department of Physics
AuthorAffiliation_xml – name: Department of Physics
– name: Department of Chemistry
– name: Graduate Program of Nano Biomedical Engineering
– name: Center for Nanomedicine
– name: Institute for Basic Science (IBS)
Author_xml – sequence: 1
  givenname: Yongjun
  orcidid: 0000-0002-7281-7226
  surname: Lim
  fullname: Lim, Yongjun
  organization: Department of Chemistry
– sequence: 2
  givenname: Chang-Hee
  surname: Lee
  fullname: Lee, Chang-Hee
  organization: Institute for Basic Science (IBS)
– sequence: 3
  givenname: Chul-Ho
  orcidid: 0000-0002-5578-2228
  surname: Jun
  fullname: Jun, Chul-Ho
  organization: Institute for Basic Science (IBS)
– sequence: 4
  givenname: Kwanpyo
  orcidid: 0000-0001-8497-2330
  surname: Kim
  fullname: Kim, Kwanpyo
  organization: Department of Physics
– sequence: 5
  givenname: Jinwoo
  orcidid: 0000-0001-8948-5929
  surname: Cheon
  fullname: Cheon, Jinwoo
  email: jcheon@yonsei.ac.kr
  organization: Department of Chemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32392048$$D View this record in MEDLINE/PubMed
BookMark eNqF0TtPwzAQB3ALgegDNmaUkYGU8yOvsarKQ_SxwBxdY6dNSe1ip6j99rhqYUAgppNPv7Ps_3XIqTZaEXJFoUeB0bslFq4HBXDG4YS0acQgjCiLT0kbAFiYpDFvkY5zS38ULKXnpOVtxkCkbTIdG7temNrMd-HAaKfsR6XnwcTo8Lmyb0pLrOugryujg-G2WKCeq8CUwVg1WAfTbSVVMEFtCrtzvuMuyFnpi7o81i55vR--DB7D0fThadAfhcijpAnLmMdUIgPgmUpTKUs5ozNkZRqBLGmJAlOESMUUUWaCUYQkE_5rBY8zP8u75OZw79qa941yTb6qXKHqGrUyG5eziAnOkkiI_6kAmnIOSeTp9ZFuZisl87WtVmh3-VdeHtweQGGNc1aV34RCvl9Hvl9HflyH5-wHL6oGGx9mY7Gq_xo6vnffXJqN1T7I3-kn7G-Z9w
CitedBy_id crossref_primary_10_1021_acs_inorgchem_2c04467
crossref_primary_10_2139_ssrn_3986052
crossref_primary_10_1002_anie_202418248
crossref_primary_10_1007_s40820_024_01378_5
crossref_primary_10_1021_acs_chemmater_4c01892
crossref_primary_10_1021_acs_chemmater_2c03773
crossref_primary_10_1021_acs_chemmater_2c03659
crossref_primary_10_1039_D4NR02769H
crossref_primary_10_1021_acsnano_4c09844
crossref_primary_10_1002_er_8620
crossref_primary_10_1021_acs_accounts_0c00701
crossref_primary_10_1021_acsnano_0c09094
crossref_primary_10_1021_acs_accounts_0c00802
crossref_primary_10_1007_s40242_024_4072_y
crossref_primary_10_1002_ange_202301802
crossref_primary_10_3390_ma15051633
crossref_primary_10_1021_acs_chemmater_0c02951
crossref_primary_10_1016_j_mattod_2024_10_010
crossref_primary_10_1039_D0NR07902B
crossref_primary_10_1002_ange_202418248
crossref_primary_10_1002_ange_202309784
crossref_primary_10_1016_j_gee_2024_11_010
crossref_primary_10_1002_smll_202102892
crossref_primary_10_4019_bjscc_80_14
crossref_primary_10_1016_j_cej_2022_135230
crossref_primary_10_1021_acsami_2c16873
crossref_primary_10_1021_acs_chemmater_1c01107
crossref_primary_10_1021_acs_nanolett_3c00464
crossref_primary_10_1002_anie_202301802
crossref_primary_10_1021_jacs_4c10252
crossref_primary_10_1021_acs_inorgchem_1c03675
crossref_primary_10_1039_D0DT03940C
crossref_primary_10_1002_anie_202309784
crossref_primary_10_1016_j_est_2023_106964
Cites_doi 10.1021/ja508161c
10.1038/s41598-018-35915-1
10.1021/nl400325s
10.1021/ja00235a031
10.1126/science.1096566
10.1039/C2CS35369E
10.1039/C2CS35241A
10.1039/jr9610004933
10.1002/anie.201504099
10.1021/ja00440a093
10.1126/science.aad5520
10.1039/C4TA05148C
10.1016/j.nantod.2011.02.006
10.1021/om00021a054
10.1021/cm2002868
10.1021/ja312222k
10.1002/adma.201302400
10.1021/nl0340879
10.1007/BF00603390
10.1038/nmat1982
10.1021/nl104548g
10.1021/acs.chemmater.5b03911
10.1021/jacs.5b03868
10.1021/ja905732q
10.1149/1.2129108
10.1039/C4NR02025A
10.1111/j.1151-2916.1960.tb13699.x
10.1007/978-3-540-71488-0
10.1126/science.1239221
10.1021/ja0422155
10.6028/NBS.NSRDS.31
10.1038/ncomms3933
10.1126/science.1125767
10.2138/rmg.2010.72.17
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.0c03230
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 9134
ExternalDocumentID 32392048
10_1021_jacs_0c03230
d17208928
Genre Journal Article
GroupedDBID -
.K2
02
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a357t-f6361da20039e88ddfdb1ba2f850df1fa4a8a05e61aad9421a0794520c3696363
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 08:50:17 EDT 2025
Thu Jul 10 16:38:22 EDT 2025
Thu Apr 03 06:58:21 EDT 2025
Tue Jul 01 02:08:51 EDT 2025
Thu Apr 24 23:07:32 EDT 2025
Thu Aug 27 22:10:50 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a357t-f6361da20039e88ddfdb1ba2f850df1fa4a8a05e61aad9421a0794520c3696363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7281-7226
0000-0002-5578-2228
0000-0001-8497-2330
0000-0001-8948-5929
PMID 32392048
PQID 2401833075
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_2524327544
proquest_miscellaneous_2401833075
pubmed_primary_32392048
crossref_primary_10_1021_jacs_0c03230
crossref_citationtrail_10_1021_jacs_0c03230
acs_journals_10_1021_jacs_0c03230
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-20
PublicationDateYYYYMMDD 2020-05-20
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-20
  day: 20
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
Crank J. (ref29/cit29) 1979
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
Jost W. (ref28/cit28) 1960
ref17/cit17
ref10/cit10
ref26/cit26
Mehrer H. (ref35/cit35) 2007
ref19/cit19
Bird R. B. (ref36/cit36) 2002
ref21/cit21
ref12/cit12
ref15/cit15
Darwent B. B. (ref24/cit24) 1970
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref7/cit7
References_xml – ident: ref9/cit9
  doi: 10.1021/ja508161c
– ident: ref37/cit37
  doi: 10.1038/s41598-018-35915-1
– ident: ref17/cit17
  doi: 10.1021/nl400325s
– ident: ref25/cit25
  doi: 10.1021/ja00235a031
– ident: ref10/cit10
  doi: 10.1126/science.1096566
– ident: ref3/cit3
  doi: 10.1039/C2CS35369E
– ident: ref6/cit6
  doi: 10.1039/C2CS35241A
– ident: ref18/cit18
  doi: 10.1039/jr9610004933
– ident: ref12/cit12
  doi: 10.1002/anie.201504099
– ident: ref23/cit23
  doi: 10.1021/ja00440a093
– ident: ref13/cit13
  doi: 10.1126/science.aad5520
– ident: ref16/cit16
  doi: 10.1039/C4TA05148C
– ident: ref4/cit4
  doi: 10.1016/j.nantod.2011.02.006
– ident: ref26/cit26
  doi: 10.1021/om00021a054
– ident: ref19/cit19
  doi: 10.1021/cm2002868
– ident: ref22/cit22
  doi: 10.1021/ja312222k
– volume-title: The Mathematics of Diffusion
  year: 1979
  ident: ref29/cit29
– ident: ref2/cit2
  doi: 10.1002/adma.201302400
– ident: ref15/cit15
  doi: 10.1021/nl0340879
– ident: ref30/cit30
  doi: 10.1007/BF00603390
– ident: ref27/cit27
  doi: 10.1038/nmat1982
– ident: ref20/cit20
  doi: 10.1021/nl104548g
– volume-title: Diffusion in Solids, Liquids, Gases
  year: 1960
  ident: ref28/cit28
– ident: ref34/cit34
  doi: 10.1021/acs.chemmater.5b03911
– ident: ref7/cit7
  doi: 10.1021/jacs.5b03868
– ident: ref11/cit11
  doi: 10.1021/ja905732q
– ident: ref31/cit31
  doi: 10.1149/1.2129108
– ident: ref5/cit5
  doi: 10.1039/C4NR02025A
– ident: ref32/cit32
  doi: 10.1111/j.1151-2916.1960.tb13699.x
– volume-title: Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes
  year: 2007
  ident: ref35/cit35
  doi: 10.1007/978-3-540-71488-0
– ident: ref1/cit1
  doi: 10.1126/science.1239221
– volume-title: Transport Phenomena
  year: 2002
  ident: ref36/cit36
– ident: ref14/cit14
  doi: 10.1021/ja0422155
– volume-title: Bond Dissociation Energies in Simple Molecules
  year: 1970
  ident: ref24/cit24
  doi: 10.6028/NBS.NSRDS.31
– ident: ref8/cit8
  doi: 10.1038/ncomms3933
– ident: ref21/cit21
  doi: 10.1126/science.1125767
– ident: ref33/cit33
  doi: 10.2138/rmg.2010.72.17
SSID ssj0004281
Score 2.470744
Snippet Nanoscale dynamic processes such as the diffusion of ions within solid-state structures are critical for understanding and tuning material properties in a wide...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9130
SubjectTerms anion exchange
catalytic activity
cations
crystal structure
diffusivity
energy
nanocrystals
oxygen
sulfur
Title Morphology-Conserving Non-Kirkendall Anion Exchange of Metal Oxide Nanocrystals
URI http://dx.doi.org/10.1021/jacs.0c03230
https://www.ncbi.nlm.nih.gov/pubmed/32392048
https://www.proquest.com/docview/2401833075
https://www.proquest.com/docview/2524327544
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHODC-zFe6iQ4oU6p02TZEU0bCGlwgEm7VWmaIrSpResmDX49Th8ghgZcK6cPJ3Y-N_ZnQi4QsRoaau0CSAxQJNVoUr5yJWhmhGkBhLbeuX8vbgf-3ZAPvxJkF0_wwfID6axJNWUIllfJGgi0XwuBOo9f9Y8gvQrmtqRgZYL74mi7Aens-wa0BFXmu0tvi9xUNTpFUsmoOZuGTf3-k7LxjxffJpslwHSuixWxQ1ZMskvWO1Vftz3y0E9Rt_nfdNe267TOInl27vNWwpORwRh9jOMTnDCnOy8Kg500dvoGcbrzMH-JjIM-OdWTN0SW42yfDHrdp86tW7ZVcBXjrakbCya8SNmstLaRMoriKPRCBbHkNIq9WPlKKsqN8JSK2j54iqLRcqDa9v5jgh2QWpIm5og4iB-UERxaMWe-BkQbyo8tHY3UNq6UddJAJQSlWWRBfuINGHHYq6Vq6uSqmo9Al7zktj3GeIn05af0a8HHsUSuUU1tgPq1pyAqMeksCxDCoBtD18Z_keHgM7DcgHVyWKyLz6fh3duW7fj4H992QjbAxueUozc6JbXpZGbOEMRMw_N8BX8A-9jotQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZ4HMaF92M8OwlOqChNmi47oolpPDYOgLRblaYpQkwtWjcJ-PXYXbcJpKFdqyRNbcf53MSfAc4RsVoWGeNyrjBAUczgkvK1q7gRNrB1ziPKd-50g_aLf9eTvTJZnXJhcBI5jpQXh_gzdgGiCcKHzDCBmHkZVhGHcDLo6-bTLA2SK2-CdusqEOU997-9aR8y-e99aA64LDaZ1gZ0p9Mr7pa8X42G0ZX5_sPcuPD8N2G9hJvO9dg-tmDJpttQaU6qvO3AYydDSRf_1l0q3kmuI311ukVh4cG7xYi9j_1TVJ9z8zlOE3ayxOlYRO3O4-dbbB300JkZfCHO7Oe78NK6eW623bLIgquFrA_dJBCBF2u6o9awSsVxEkdepHmiJIsTL9G-VppJG3haxw2fe5rhEpacGaoEKAKxBytpltoDcBBNaIt6qSdS-IYj9tB-QuQ0ylCUqapQQyGE5SLJw-L8m2P8QU9L0VThcqKW0JQs5VQsoz-n9cW09ceYnWNOu9pEwyHKl85EdGqzUR4ioEGnho5O_tNGcl9wYgqswv7YPKZvw9EbxH18uMC3nUGl_dx5CB9uu_dHsMYpcmcS_dQxrAwHI3uC8GYYnRZG_QObOPEW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8xkDZeBvuAlY8tlbanKcix48R9RIWKfbRM25B4ixzHRogqQU0qsf313OWjE5WKxmtiO_b57vy7nO8O4CMiVstSY3zOFRooihkUqVD7ihthIxtznlK883gSnV2EXy_l5RoEXSwMTqLEkcraiU9SfZu5NsMApQrCF8wwgbj5GWyQx46Y-nj4618oJFdBh3hjFYn2rvtybzqLTPnwLFoBMOuDZrQFPxdTrO-X3BzNq_TI_F3K3vikNWzDyxZ2escNn7yCNZu_hhfDrtrbGzgfF0jx-h-7T0U8SYXkV96kLjA8u7FouU-xf47b6J3eNeHCXuG8sUX07p3fXWfWQ01dmNkfxJvT8i1cjE5_D8_8ttiCr4WMK99FIgoyTXfVBlapLHNZGqSaOyVZ5gKnQ600kzYKtM4GIQ80Q1GWnBmqCCgisQPreZHbd-AhqtA2kjx2UoSGIwbRoaMkNcqQtal60EciJK2wlEntB-doh9DTljQ9-NxtTWLabOVUNGO6ovWnRevbJkvHinb9bpcTpC_5RnRui3mZILBB5YYKTz7SRvJQcMoY2IPdhkUWX8PRB5QDee8_1vYBnv84GSXfv0y-7cMmJwOeSVRXB7Bezeb2EFFOlb6v-foek_PzmQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Morphology-Conserving+Non-Kirkendall+Anion+Exchange+of+Metal+Oxide+Nanocrystals&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Lim%2C+Yongjun&rft.au=Lee%2C+Chang-Hee&rft.au=Jun%2C+Chul-Ho&rft.au=Kim%2C+Kwanpyo&rft.date=2020-05-20&rft.issn=1520-5126&rft.eissn=1520-5126&rft.volume=142&rft.issue=20&rft.spage=9130&rft_id=info:doi/10.1021%2Fjacs.0c03230&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon