Morphology-Conserving Non-Kirkendall Anion Exchange of Metal Oxide Nanocrystals

Nanoscale dynamic processes such as the diffusion of ions within solid-state structures are critical for understanding and tuning material properties in a wide range of areas, such as energy storage and conversion, catalysis, and optoelectronics. In the generation of new types of nanocrystals (NCs),...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 142; no. 20; pp. 9130 - 9134
Main Authors Lim, Yongjun, Lee, Chang-Hee, Jun, Chul-Ho, Kim, Kwanpyo, Cheon, Jinwoo
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 20.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nanoscale dynamic processes such as the diffusion of ions within solid-state structures are critical for understanding and tuning material properties in a wide range of areas, such as energy storage and conversion, catalysis, and optoelectronics. In the generation of new types of nanocrystals (NCs), diffusion-mediated ion exchange reactions have also been proposed as one of the most effective transformational strategies. However, retaining the original morphology and crystal structure of metal oxide NCs has been challenging because of Kirkendall void formation, and there has been no success, especially for anion exchange. Here we show that with the aid of an oxygen extracting reagent (OER), anion diffusion is dramatically accelerated and morphology-conserving anion exchange without Kirkendall void formation is possible. In the case of the conversion of Fe3O4 to Fe3S4, oxygen extraction and subsequent formation of the amorphous phase facilitate the migration of incoming sulfur anions by approximately 100-fold, which is close to the level of the outgoing cation diffusivity. We also demonstrate that the working principle of the morphology-conserving non-Kirkendall anion exchange is operative for metal oxide NCs with different shapes and crystal structures.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/jacs.0c03230