Open-Cage Fullerene as a Macrocyclic Ligand for Na, Pt, and Rh Metal Complexes
An open-cage [60]fullerene derivative was prepared through Malaprade oxidation of a vicinal triol moiety as the key step. Above the 17-membered orifice, there is one carboxyl group. Three ketone carbonyl groups and one lactone carbonyl group are located on the rim of the orifice. The carboxylic and...
Saved in:
Published in | Journal of the American Chemical Society Vol. 145; no. 32; pp. 18022 - 18028 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
WASHINGTON
American Chemical Society
16.08.2023
Amer Chemical Soc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | An open-cage [60]fullerene derivative was prepared through Malaprade oxidation of a vicinal triol moiety as the key step. Above the 17-membered orifice, there is one carboxyl group. Three ketone carbonyl groups and one lactone carbonyl group are located on the rim of the orifice. The carboxylic and carbonyl oxygen atoms around the orifice act as strong polydentate ligands for a sodium ion. These oxygen atoms also react with [Rh(CO)2Cl]2 to form various isomeric rhodium complexes with comparable stability. The fullerene CC bond on the rim of the orifice forms a stable platinum complex when treated with Pt(PPh3)4. Single crystal X-ray diffraction data reveal that one of the carboxylic oxygen atoms above the orifice forms a H-bond with the water molecule trapped in the cage. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/jacs.3c05733 |