Monomer/Oligomer Quasi-Racemic Protein Crystallography
Racemic or quasi-racemic crystallography recently emerges as a useful technology for solution of the crystal structures of biomacromolecules. It remains unclear to what extent the biomacromolecules of opposite handedness can differ from each other in racemic or quasi-racemic crystallography. Here we...
Saved in:
Published in | Journal of the American Chemical Society Vol. 138; no. 43; pp. 14497 - 14502 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
02.11.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Racemic or quasi-racemic crystallography recently emerges as a useful technology for solution of the crystal structures of biomacromolecules. It remains unclear to what extent the biomacromolecules of opposite handedness can differ from each other in racemic or quasi-racemic crystallography. Here we report a finding that monomeric d-ubiquitin (Ub) has propensity to cocrystallize with different dimers, trimers, and even a tetramer of l-Ub. In these cocrystals the unconnected monomeric d-Ubs can self-assemble to form pseudomirror images of different oligomers of l-Ub. This monomer/oligomer cocrystallization phenomenon expands the concept of racemic crystallography. Using the monomer/oligomer cocrystallization technology we obtained, for the first time the X-ray structures of linear M1-linked tri- and tetra-Ubs and a K11/K63-branched tri-Ub. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/jacs.6b09545 |