Cell-Penetrating Peptides Transport Noncovalently Linked Thermally Activated Delayed Fluorescence Nanoparticles for Time-Resolved Luminescence Imaging
Luminescent probes and nanoparticles (NPs) with long excited state lifetimes are essential for time-resolved biological imaging. Generally, cell membranes are physiological barriers that could prevent the uptake of many unnatural compounds. It is still a big challenge to prepare biocompatible imagin...
Saved in:
Published in | Journal of the American Chemical Society Vol. 140; no. 50; pp. 17484 - 17491 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
19.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Luminescent probes and nanoparticles (NPs) with long excited state lifetimes are essential for time-resolved biological imaging. Generally, cell membranes are physiological barriers that could prevent the uptake of many unnatural compounds. It is still a big challenge to prepare biocompatible imaging agents with high cytomembrane permeability, especially for nonmetallic NPs with long-lived luminescence. Herein, an amphiphilic cell-penetrating peptide, F6G6(rR)3R2, was designed to transport hydrophobic fluorophores across cellular barriers. Three classical thermally activated delayed fluorescence (TADF) molecules, 4CzIPN, NAI-DPAC, and BTZ-DMAC, could self-assemble into well-dispersed NPs with F6G6(rR)3R2 in aqueous solution. These NPs showed low cytotoxicity and could penetrate membranes easily. Moreover, long-lived TADF enabled them to be used in time-resolved luminescence imaging in oxygenic environments. These findings greatly expanded the applications of cell-penetrating peptides for delivery of molecules and NPs by only noncovalent interactions, which were more flexible and easier than covalent modifications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/jacs.8b08438 |