Binary Superlattices of Infrared Plasmonic and Excitonic Nanocrystals
Self-assembled superlattices of nanocrystals offer exceptional control over the coupling between nanocrystals, similar to how solid-state crystals tailor the bonding between atoms. By assembling nanocrystals of different properties (e.g., plasmonic, excitonic, dielectric, or magnetic), we can form a...
Saved in:
Published in | ACS applied materials & interfaces Vol. 12; no. 21; pp. 24271 - 24280 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
27.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Self-assembled superlattices of nanocrystals offer exceptional control over the coupling between nanocrystals, similar to how solid-state crystals tailor the bonding between atoms. By assembling nanocrystals of different properties (e.g., plasmonic, excitonic, dielectric, or magnetic), we can form a wealth of binary superlattice metamaterials with new functionalities. Here, we introduce infrared plasmonic Cu2–x S nanocrystals to the limited library of materials that have been successfully incorporated into binary superlattices. We are the first to create a variety of binary superlattices with large excitonic (PbS) nanocrystals and small plasmonic (Cu2–x S) nanocrystals, both resonant in the infrared. Then, by controlling the surface chemistry of large Cu2–x S nanocrystals, we produced structurally analogous superlattices of large Cu2–x S and small PbS nanocrystals. Transmission electron microscopy (TEM) and grazing-incidence small-angle X-ray scattering (GISAXS) were used to characterize both types of superlattices. Furthermore, our unique surface modification of the large Cu2–x S nanocrystals also prevented them from chemically quenching the photoluminescence of the PbS nanocrystals, which occurred when the PbS nanocrystals were mixed with unmodified Cu2–x S nanocrystals. These synthetic achievements create a set of binary superlattices that can be used to understand how infrared plasmonic and excitonic nanocrystals couple in a variety of symmetries and stoichiometries. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c03805 |