Constructing Solid–Gas-Interfacial Fenton Reaction over Alkalinized‑C3N4 Photocatalyst To Achieve Apparent Quantum Yield of 49% at 420 nm

Efficient generation of active oxygen-related radicals plays an essential role in boosting advanced oxidation process. To promote photocatalytic oxidation for gaseous pollutant over g-C3N4, a solid–gas interfacial Fenton reaction is coupled into alkalinized g-C3N4-based photocatalyst to effectively...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 138; no. 40; pp. 13289 - 13297
Main Authors Li, Yunxiang, Ouyang, Shuxin, Xu, Hua, Wang, Xin, Bi, Yingpu, Zhang, Yuanfang, Ye, Jinhua
Format Journal Article
LanguageEnglish
Published American Chemical Society 12.10.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Efficient generation of active oxygen-related radicals plays an essential role in boosting advanced oxidation process. To promote photocatalytic oxidation for gaseous pollutant over g-C3N4, a solid–gas interfacial Fenton reaction is coupled into alkalinized g-C3N4-based photocatalyst to effectively convert photocatalytic generation of H2O2 into oxygen-related radicals. This system includes light energy as power, alkalinized g-C3N4-based photocatalyst as an in situ and robust H2O2 generator, and surface-decorated Fe3+ as a trigger of H2O2 conversion, which attains highly efficient and universal activity for photodegradation of volatile organic compounds (VOCs). Taking the photooxidation of isopropanol as model reaction, this system achieves a photoactivity of 2–3 orders of magnitude higher than that of pristine g-C3N4, which corresponds to a high apparent quantum yield of 49% at around 420 nm. In-situ electron spin resonance (ESR) spectroscopy and sacrificial-reagent incorporated photocatalytic characterizations indicate that the notable photoactivity promotion could be ascribed to the collaboration between photocarriers (electrons and holes) and Fenton process to produce abundant and reactive oxygen-related radicals. The strategy of coupling solid–gas interfacial Fenton process into semiconductor-based photocatalysis provides a facile and promising solution to the remediation of air pollution via solar energy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/jacs.6b07272