Kimberlites and lamproites of the East European Platform: Petrology and geochemistry

Several episodes of kimberlite magmatism occurred in the East European Province (EEP) during a long (about 1.5 Gyr) time period, from the Late Paleoproterozoic (ca. 1.8 Ga) in the Archean Ukrainian and Baltic shields to the Middle Paleozoic (ca. 0.36 Ga) mainly in the Arkhangelsk, Timan, and adjacen...

Full description

Saved in:
Bibliographic Details
Published inPetrology Vol. 15; no. 4; pp. 315 - 334
Main Authors Bogatikov, O A, Kononova, V A, Nosova, A A, Kondrashov, I A
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Nature B.V 01.07.2007
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Several episodes of kimberlite magmatism occurred in the East European Province (EEP) during a long (about 1.5 Gyr) time period, from the Late Paleoproterozoic (ca. 1.8 Ga) in the Archean Ukrainian and Baltic shields to the Middle Paleozoic (ca. 0.36 Ga) mainly in the Arkhangelsk, Timan, and adjacent regions. Based on the analysis of data on 16 kimberlite occurrences and four lamproite occurrences within the EEP, five time stages can be distinguished; one of them, the Middle Paleozoic stage (Middle Ordovician and Devonian), is the most productive epoch for diamond in the northern hemisphere (EEP, Siberian Craton, and part of the China Craton). The analysis of petrological and geochemical characteristics of kimberlites (lamproites were studied less thoroughly) revealed variations in rock composition and their correlation with a number of factors, including the spatial confinement to the northern or southern Archean blocks of the craton, time of formation of the source of kimberlite melts, contents of volatiles and autoliths, etc. Three petrogeochemical types of kimberlites were distinguished: high-, medium-, and low-Ti (TiO2 > 3 wt %, 1–3 wt %, and <1 wt %, respectively). There are two time intervals of the formation of kimberlite and lamproite sources in the EEP, corresponding to TNd(DM) values of about 2 Ga (up to 2.9 Ga in the Por’ya Guba occurrence) and 1 Ga. The latter interval includes two groups of occurrences with model source ages of about 1 Ga (low-and medium-Ti kimberlites of the Zolotitsa and Verkhotina occurrences) and about 0.8 Ga (high-Ti kimberlites of the Kepino and a number of other occurrences); i.e., there seems to be an evolutionary trend in the composition of kimberlites. Concentric zoning patterns were recognized. The role of the crust in kimberlite sources is discussed; it is assumed that buried remnants of the oceanic lithosphere (megaliths) may underlie whole continents. A unique feature of the composition of low-Ti kimberlites, for instance, kimberlites of the Zolotitsa occurrence (to a smaller extent, medium-Ti kimberlites of the V. Grib pipe) is the distinct depletion of highly charged elements and pronounced negative anomalies of Ti, Zr, Th, U, Nb, and Ta in trace-element distribution patterns, which indicates a contribution of crustal material to the source of these kimberlites. It was shown that autoliths exert a significant influence on the differentiation of kimberlite material, resulting in the enrichment of rocks in the whole spectrum of incompatible elements. It was argued that geochemical criteria can be used together with traditional criteria (including those based on indicator minerals) for the assessment of diamond potential in EEP occurrences. We hope that such a combined approach will yield important outcomes in the future.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0869-5911
1556-2085
DOI:10.1134/S0869591107040017