Suitable Cathode NMP Replacement for Efficient Sustainable Printed Li-Ion Batteries

N-methyl-2-pyrrolidone (NMP) is the most common solvent for manufacturing cathode electrodes in the battery industry; however, it is becoming restricted in several countries due to its negative environmental impact. Taking into account that ∼99% of the solvent used during electrode fabrication is re...

Full description

Saved in:
Bibliographic Details
Published inACS applied energy materials Vol. 5; no. 4; pp. 4047 - 4058
Main Authors Sliz, Rafal, Valikangas, Juho, Silva Santos, Hellen, Vilmi, Pauliina, Rieppo, Lassi, Hu, Tao, Lassi, Ulla, Fabritius, Tapio
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 25.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract N-methyl-2-pyrrolidone (NMP) is the most common solvent for manufacturing cathode electrodes in the battery industry; however, it is becoming restricted in several countries due to its negative environmental impact. Taking into account that ∼99% of the solvent used during electrode fabrication is recovered, dimethylformamide (DMF) is a considerable candidate to replace NMP. The lower boiling point and higher ignition temperature of DMF lead to a significant reduction in the energy consumption needed for drying the electrodes and improve the safety of the production process. Additionally, the lower surface tension and viscosity of DMF enable improved current collector wetting and higher concentrations of the solid material in the cathode slurry. To verify the suitability of DMF as a replacement for NMP, we utilized screen printing, a fabrication method that provides roll-to-roll compatibility while allowing controlled deposition and creation of sophisticated patterns. The battery systems utilized NMC (LiNi x Mn y Co z O2) chemistry in two configurations: NMC523 and NMC88. The first, well-established NCM523, was used as a reference, while NMC88 was used to demonstrate the potential of the proposed method with high-capacity materials. The cathodes were used to create coin and pouch cell batteries that were cycled 1000 times. The achieved results indicate that DMF can successfully replace NMP in the NMC cathode fabrication process without compromising battery performance. Specifically, both the NMP blade-coated and DMF screen-printed batteries retained 87 and 90% of their capacity after 1000 (1C/1C) cycles for NMC523 and NMC88, respectively. The modeling results of the drying process indicate that utilizing a low-boiling-point solvent (DMF) instead of NMP can reduce the drying energy consumption fourfold, resulting in a more environmentally friendly battery production process.
AbstractList N -methyl-2-pyrrolidone (NMP) is the most common solvent for manufacturing cathode electrodes in the battery industry; however, it is becoming restricted in several countries due to its negative environmental impact. Taking into account that ∼99% of the solvent used during electrode fabrication is recovered, dimethylformamide (DMF) is a considerable candidate to replace NMP. The lower boiling point and higher ignition temperature of DMF lead to a significant reduction in the energy consumption needed for drying the electrodes and improve the safety of the production process. Additionally, the lower surface tension and viscosity of DMF enable improved current collector wetting and higher concentrations of the solid material in the cathode slurry. To verify the suitability of DMF as a replacement for NMP, we utilized screen printing, a fabrication method that provides roll-to-roll compatibility while allowing controlled deposition and creation of sophisticated patterns. The battery systems utilized NMC (LiNi x Mn y Co z O 2 ) chemistry in two configurations: NMC523 and NMC88. The first, well-established NCM523, was used as a reference, while NMC88 was used to demonstrate the potential of the proposed method with high-capacity materials. The cathodes were used to create coin and pouch cell batteries that were cycled 1000 times. The achieved results indicate that DMF can successfully replace NMP in the NMC cathode fabrication process without compromising battery performance. Specifically, both the NMP blade-coated and DMF screen-printed batteries retained 87 and 90% of their capacity after 1000 (1C/1C) cycles for NMC523 and NMC88, respectively. The modeling results of the drying process indicate that utilizing a low-boiling-point solvent (DMF) instead of NMP can reduce the drying energy consumption fourfold, resulting in a more environmentally friendly battery production process.
N-methyl-2-pyrrolidone (NMP) is the most common solvent for manufacturing cathode electrodes in the battery industry; however, it is becoming restricted in several countries due to its negative environmental impact. Taking into account that ∼99% of the solvent used during electrode fabrication is recovered, dimethylformamide (DMF) is a considerable candidate to replace NMP. The lower boiling point and higher ignition temperature of DMF lead to a significant reduction in the energy consumption needed for drying the electrodes and improve the safety of the production process. Additionally, the lower surface tension and viscosity of DMF enable improved current collector wetting and higher concentrations of the solid material in the cathode slurry. To verify the suitability of DMF as a replacement for NMP, we utilized screen printing, a fabrication method that provides roll-to-roll compatibility while allowing controlled deposition and creation of sophisticated patterns. The battery systems utilized NMC (LiNi x Mn y Co z O2) chemistry in two configurations: NMC523 and NMC88. The first, well-established NCM523, was used as a reference, while NMC88 was used to demonstrate the potential of the proposed method with high-capacity materials. The cathodes were used to create coin and pouch cell batteries that were cycled 1000 times. The achieved results indicate that DMF can successfully replace NMP in the NMC cathode fabrication process without compromising battery performance. Specifically, both the NMP blade-coated and DMF screen-printed batteries retained 87 and 90% of their capacity after 1000 (1C/1C) cycles for NMC523 and NMC88, respectively. The modeling results of the drying process indicate that utilizing a low-boiling-point solvent (DMF) instead of NMP can reduce the drying energy consumption fourfold, resulting in a more environmentally friendly battery production process.
-methyl-2-pyrrolidone (NMP) is the most common solvent for manufacturing cathode electrodes in the battery industry; however, it is becoming restricted in several countries due to its negative environmental impact. Taking into account that ∼99% of the solvent used during electrode fabrication is recovered, dimethylformamide (DMF) is a considerable candidate to replace NMP. The lower boiling point and higher ignition temperature of DMF lead to a significant reduction in the energy consumption needed for drying the electrodes and improve the safety of the production process. Additionally, the lower surface tension and viscosity of DMF enable improved current collector wetting and higher concentrations of the solid material in the cathode slurry. To verify the suitability of DMF as a replacement for NMP, we utilized screen printing, a fabrication method that provides roll-to-roll compatibility while allowing controlled deposition and creation of sophisticated patterns. The battery systems utilized NMC (LiNi Mn Co O ) chemistry in two configurations: NMC523 and NMC88. The first, well-established NCM523, was used as a reference, while NMC88 was used to demonstrate the potential of the proposed method with high-capacity materials. The cathodes were used to create coin and pouch cell batteries that were cycled 1000 times. The achieved results indicate that DMF can successfully replace NMP in the NMC cathode fabrication process without compromising battery performance. Specifically, both the NMP blade-coated and DMF screen-printed batteries retained 87 and 90% of their capacity after 1000 (1C/1C) cycles for NMC523 and NMC88, respectively. The modeling results of the drying process indicate that utilizing a low-boiling-point solvent (DMF) instead of NMP can reduce the drying energy consumption fourfold, resulting in a more environmentally friendly battery production process.
Author Rieppo, Lassi
Vilmi, Pauliina
Hu, Tao
Valikangas, Juho
Sliz, Rafal
Lassi, Ulla
Silva Santos, Hellen
Fabritius, Tapio
AuthorAffiliation Optoelectronics and Measurement Techniques Unit
Research Unit of Medical Imaging, Physics and Technology
Research Unit of Sustainable Chemistry
University of Oulu
Fibre and Particle Engineering Research Unit
AuthorAffiliation_xml – name: Research Unit of Sustainable Chemistry
– name: Fibre and Particle Engineering Research Unit
– name: Optoelectronics and Measurement Techniques Unit
– name: University of Oulu
– name: Research Unit of Medical Imaging, Physics and Technology
Author_xml – sequence: 1
  givenname: Rafal
  orcidid: 0000-0002-7224-2426
  surname: Sliz
  fullname: Sliz, Rafal
  email: rafal.sliz@oulu.fi
  organization: Optoelectronics and Measurement Techniques Unit
– sequence: 2
  givenname: Juho
  surname: Valikangas
  fullname: Valikangas, Juho
  organization: University of Oulu
– sequence: 3
  givenname: Hellen
  surname: Silva Santos
  fullname: Silva Santos, Hellen
  organization: University of Oulu
– sequence: 4
  givenname: Pauliina
  surname: Vilmi
  fullname: Vilmi, Pauliina
  organization: Optoelectronics and Measurement Techniques Unit
– sequence: 5
  givenname: Lassi
  surname: Rieppo
  fullname: Rieppo, Lassi
  organization: University of Oulu
– sequence: 6
  givenname: Tao
  surname: Hu
  fullname: Hu, Tao
  organization: University of Oulu
– sequence: 7
  givenname: Ulla
  surname: Lassi
  fullname: Lassi, Ulla
  organization: University of Oulu
– sequence: 8
  givenname: Tapio
  surname: Fabritius
  fullname: Fabritius, Tapio
  organization: Optoelectronics and Measurement Techniques Unit
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35497684$$D View this record in MEDLINE/PubMed
BookMark eNp1kctr3DAQxkVIyau55lh8LAVv9bJsXQrtkhds29Btz0KWRomCLW0kudD_Pk52G9JDT6NBv--bYb5jtB9iAITOCF4QTMlHbbKGcUEMppKyPXREm5bXWAq6_-p9iE5zvscYE0kElfIAHbKGy1Z0_Ait15Mvuh-gWupyFy1U377eVD9gM2gDI4RSuZiqc-e88U_despF-_CsuEk-FLDVytfXMVRfdCmQPOS36I3TQ4bTXT1Bvy7Ofy6v6tX3y-vl51WtWdOUuu0Io0w4Snljac8J17ajVgvOLevBdbbh3IneaUcZk5RzQp1xnBshW04sO0Gftr6bqR_Bmnm_pAe1SX7U6Y-K2qt_f4K_U7fxt5KYN6LtZoP3O4MUHybIRY0-GxgGHSBOWVHRdIJT2dEZXWxRk2LOCdzLGILVUxhqG4bahTEL3r1e7gX_e_oZ-LAFZqG6j1MK863-5_YIdHWWUw
CitedBy_id crossref_primary_10_1039_D3GC05027K
crossref_primary_10_1039_D3MH01729J
crossref_primary_10_1021_acsenergylett_3c00936
crossref_primary_10_1039_D3RA00549F
crossref_primary_10_1080_15376494_2024_2350678
crossref_primary_10_3390_batteries10010039
crossref_primary_10_1039_D2EE03840D
crossref_primary_10_1021_acsami_2c19218
crossref_primary_10_1109_MNANO_2022_3195077
crossref_primary_10_1021_acs_chemrev_3c00196
crossref_primary_10_3390_nano13020324
crossref_primary_10_1002_aenm_202300973
crossref_primary_10_1002_batt_202300527
crossref_primary_10_1149_1945_7111_acf525
crossref_primary_10_1149_1945_7111_ad4396
crossref_primary_10_1021_acsanm_4c01296
crossref_primary_10_33961_jecst_2023_00115
crossref_primary_10_1016_j_ensm_2024_103542
crossref_primary_10_1016_j_pnsc_2024_02_013
crossref_primary_10_3390_s24103106
crossref_primary_10_1002_celc_202400051
crossref_primary_10_1016_j_heliyon_2022_e12623
crossref_primary_10_1021_acssuschemeng_3c04231
crossref_primary_10_3390_membranes12100999
crossref_primary_10_1016_j_esci_2023_100152
crossref_primary_10_1021_acsami_3c18862
Cites_doi 10.1081/mb-100106174
10.1016/j.ensm.2020.12.019
10.3390/polym13091354
10.1016/0008-6223(83)90155-0
10.1021/acssuschemeng.0c02884
10.1002/adma.201905279
10.1016/j.energy.2017.01.096
10.1016/j.jpowsour.2017.03.131
10.1021/acs.chemrev.7b00571
10.1021/acs.chemmater.9b04066
10.1021/acssuschemeng.9b06363
10.1021/acsaem.0c02575
10.1039/B600529B
10.1016/j.isci.2020.101081
10.1016/j.nanoen.2020.105666
10.1016/j.jpowsour.2016.04.102
10.1149/1945-7111/abf87d
10.1016/j.ensm.2020.03.012
10.1016/j.ceramint.2013.08.137
10.1016/j.cirp.2017.04.109
10.1149/MA2019-02/4/170
10.1021/acsnano.9b06125
10.1149/2.0251701jes
10.1088/2515-7620/ab5e1e
10.1016/j.jpowsour.2016.05.127
10.1016/j.chempr.2018.08.035
10.1002/pip.2508
10.1002/polb.1994.090320821
10.1016/j.matpr.2018.10.073
10.1149/1945-7111/ab95c6
10.1038/s41467-018-07632-w
10.1016/j.jpowsour.2015.04.081
10.1016/j.jpowsour.2020.228315
10.1016/j.cirp.2021.04.038
10.17515/resm2015.07en0315
10.1039/D0MA00815J
10.1038/s41893-020-00645-8
10.1016/j.jenvman.2019.05.095
10.1002/aenm.202100771
10.1016/j.jpowsour.2013.08.051
10.1080/07373937.2017.1319855
10.1039/C5RA27883J
10.1016/j.yrtph.2020.104809
10.1038/nnano.2016.237
10.1149/2.0401802jes
10.1117/12.929631
10.3390/en10122107
10.1016/j.jpowsour.2013.10.039
10.1111/jiec.12072
10.1149/2.0861707jes
10.18433/J3P306
ContentType Journal Article
Copyright 2022 The Authors. Published by American Chemical Society
2022 The Authors. Published by American Chemical Society.
2022 The Authors. Published by American Chemical Society 2022 The Authors
Copyright_xml – notice: 2022 The Authors. Published by American Chemical Society
– notice: 2022 The Authors. Published by American Chemical Society.
– notice: 2022 The Authors. Published by American Chemical Society 2022 The Authors
DBID NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1021/acsaem.1c02923
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2574-0962
EndPage 4058
ExternalDocumentID 10_1021_acsaem_1c02923
35497684
a646952116
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 20202885
– fundername: ;
  grantid: 320017
GroupedDBID ABFRP
ABUCX
ACGFS
ACS
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
EBS
GGK
VF5
VG9
W1F
ABQRX
BAANH
CUPRZ
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-a355t-7813236f2245d2b414ad82da644d3bef8d544f6bfaf233924412fcf44c69741d3
IEDL.DBID ACS
ISSN 2574-0962
IngestDate Tue Sep 17 21:21:09 EDT 2024
Fri Aug 16 22:57:56 EDT 2024
Fri Aug 23 01:56:57 EDT 2024
Sat Sep 28 08:19:47 EDT 2024
Wed Apr 27 03:34:28 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords NMP
NMC523
NMC
solvent
NMC88
DMF
screen printing
printed batteries
Language English
License 2022 The Authors. Published by American Chemical Society.
Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a355t-7813236f2245d2b414ad82da644d3bef8d544f6bfaf233924412fcf44c69741d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7224-2426
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9045678
PMID 35497684
PQID 2658642982
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9045678
proquest_miscellaneous_2658642982
crossref_primary_10_1021_acsaem_1c02923
pubmed_primary_35497684
acs_journals_10_1021_acsaem_1c02923
PublicationCentury 2000
PublicationDate 2022-04-25
PublicationDateYYYYMMDD 2022-04-25
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied energy materials
PublicationTitleAlternate ACS Appl. Energy Mater
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
Zhou H. (ref32/cit32) 2021; 168
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
Mohamadi S. (ref49/cit49) 2012
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref47/cit47
  doi: 10.1081/mb-100106174
– ident: ref7/cit7
  doi: 10.1016/j.ensm.2020.12.019
– ident: ref36/cit36
  doi: 10.3390/polym13091354
– ident: ref48/cit48
  doi: 10.1016/0008-6223(83)90155-0
– ident: ref31/cit31
  doi: 10.1021/acssuschemeng.0c02884
– ident: ref40/cit40
  doi: 10.1002/adma.201905279
– ident: ref13/cit13
  doi: 10.1016/j.energy.2017.01.096
– ident: ref34/cit34
  doi: 10.1016/j.jpowsour.2017.03.131
– ident: ref21/cit21
  doi: 10.1021/acs.chemrev.7b00571
– ident: ref6/cit6
  doi: 10.1021/acs.chemmater.9b04066
– ident: ref24/cit24
  doi: 10.1021/acssuschemeng.9b06363
– ident: ref33/cit33
  doi: 10.1021/acsaem.0c02575
– ident: ref43/cit43
  doi: 10.1039/B600529B
– ident: ref23/cit23
  doi: 10.1016/j.isci.2020.101081
– volume-title: Infrared Spectroscopy - Materials Science, Engineering and Technology
  year: 2012
  ident: ref49/cit49
  contributor:
    fullname: Mohamadi S.
– ident: ref2/cit2
  doi: 10.1016/j.nanoen.2020.105666
– ident: ref11/cit11
  doi: 10.1016/j.jpowsour.2016.04.102
– volume: 168
  start-page: 040536
  year: 2021
  ident: ref32/cit32
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/abf87d
  contributor:
    fullname: Zhou H.
– ident: ref39/cit39
  doi: 10.1016/j.ensm.2020.03.012
– ident: ref16/cit16
  doi: 10.1016/j.ceramint.2013.08.137
– ident: ref10/cit10
  doi: 10.1016/j.cirp.2017.04.109
– ident: ref29/cit29
  doi: 10.1149/MA2019-02/4/170
– ident: ref15/cit15
  doi: 10.1021/acsnano.9b06125
– ident: ref25/cit25
  doi: 10.1149/2.0251701jes
– ident: ref8/cit8
  doi: 10.1088/2515-7620/ab5e1e
– ident: ref54/cit54
  doi: 10.1016/j.jpowsour.2016.05.127
– ident: ref20/cit20
  doi: 10.1016/j.chempr.2018.08.035
– ident: ref41/cit41
  doi: 10.1002/pip.2508
– ident: ref45/cit45
  doi: 10.1002/polb.1994.090320821
– ident: ref30/cit30
  doi: 10.1016/j.matpr.2018.10.073
– ident: ref42/cit42
  doi: 10.1149/1945-7111/ab95c6
– ident: ref1/cit1
  doi: 10.1038/s41467-018-07632-w
– ident: ref51/cit51
  doi: 10.1016/j.jpowsour.2015.04.081
– ident: ref27/cit27
  doi: 10.1016/j.jpowsour.2020.228315
– ident: ref35/cit35
– ident: ref53/cit53
  doi: 10.1016/j.cirp.2021.04.038
– ident: ref44/cit44
  doi: 10.17515/resm2015.07en0315
– ident: ref52/cit52
  doi: 10.1039/D0MA00815J
– ident: ref37/cit37
  doi: 10.1038/s41893-020-00645-8
– ident: ref46/cit46
– ident: ref4/cit4
  doi: 10.1016/j.jenvman.2019.05.095
– ident: ref12/cit12
  doi: 10.1002/aenm.202100771
– ident: ref17/cit17
  doi: 10.1016/j.jpowsour.2013.08.051
– ident: ref18/cit18
  doi: 10.1080/07373937.2017.1319855
– ident: ref50/cit50
  doi: 10.1039/C5RA27883J
– ident: ref38/cit38
  doi: 10.1016/j.yrtph.2020.104809
– ident: ref3/cit3
  doi: 10.1038/nnano.2016.237
– ident: ref28/cit28
  doi: 10.1149/2.0401802jes
– ident: ref19/cit19
  doi: 10.1117/12.929631
– ident: ref5/cit5
  doi: 10.3390/en10122107
– ident: ref22/cit22
  doi: 10.1016/j.jpowsour.2013.10.039
– ident: ref9/cit9
  doi: 10.1111/jiec.12072
– ident: ref26/cit26
  doi: 10.1149/2.0861707jes
– ident: ref14/cit14
  doi: 10.18433/J3P306
SSID ssj0001916299
Score 2.402237
Snippet N-methyl-2-pyrrolidone (NMP) is the most common solvent for manufacturing cathode electrodes in the battery industry; however, it is becoming restricted in...
-methyl-2-pyrrolidone (NMP) is the most common solvent for manufacturing cathode electrodes in the battery industry; however, it is becoming restricted in...
N -methyl-2-pyrrolidone (NMP) is the most common solvent for manufacturing cathode electrodes in the battery industry; however, it is becoming restricted in...
SourceID pubmedcentral
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 4047
Title Suitable Cathode NMP Replacement for Efficient Sustainable Printed Li-Ion Batteries
URI http://dx.doi.org/10.1021/acsaem.1c02923
https://www.ncbi.nlm.nih.gov/pubmed/35497684
https://search.proquest.com/docview/2658642982
https://pubmed.ncbi.nlm.nih.gov/PMC9045678
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LSwMxEMeDj4sefD_qi4iCp9TubDabPUpRqqgIVfC2ZPPAIm6lu7346Z3sttZaRI_LhkBezG9mMv8QcgoQCxeokGU2MYwnssWSSCbM2sDykAtkAF87fHcvOk_85jl6nsQ7fmbwIThXulD2rRnoFiCMzJNFiPFkeAhqdyfRFKQcqB6LxC3IGXI5jBUaZ7rwdkgX03ZoBi5_3pH8ZnSuVmsFpKLSKvR3TV6bwzJr6o9ZJcc_x7NGVkbkSS_qrbJO5my-QZa_6RFukm532Ct9LRX1hYF9Y-n93QNFRvexdh9GpIi49LJSnfBf3Un1FX0YeOUJQ2977Lqf01q3E93wLfJ0dfnY7rDRqwtMIXuULJbooIbCoW2PDGQ84MpIMArByYSZddJEnDuROeUgRLpCngKnHedaoG8SmHCbLOT93O4Siu6ck6CNFkqjm6MTzWWUCW6UjLSMRIOc4Gyko1NTpFVCHIK0nqJ0NEUNcjZeqfS9luD4teXxeCFTPCU-9aFy2x8WKSBooaeVSGiQnXphv_oK0UX26cgGiaeW_KuBV-Ce_pP3Xiol7sQDcSz3_jWOfbIEvnaixRlEB2ShHAztIRJNmR1Vm_kTV_bwJQ
link.rule.ids 230,315,783,787,888,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3ba9swFIcPXfqw9aHr7mm7TWODPSmNZUmWH0dJSbckBJJC34ysCw1jTomdl_31PbJzaVoG3aNtIWRdON_R0fkJ4BtjifSRjmnuUkt5qro0FSqlzkWOx1wiA4Tc4eFI9q_4z2txvQdn61wYbESJNZV1EH-rLhCd4Tvt_nQi02XIJM9gXyRoLQMLnU-2myoIO6y-MxJnIqeI52wt1PioimCOTLlrjh4x5sOjkvdsz8VLGG9aXR85-d1ZVnnH_H0g6Pgfv3UEhysOJT-aifMK9lzxGg7uqRO-gclkOatCZhUJaYJz68hoOCZI7GHnPWwqEgRe0qs1KMLTZJuLRcaLoENhyWBGL-cFaVQ80Sl_C1cXvel5n67uYKAaSaSiiUJ3NZYeLb2wLOcR11YxqxGjbJw7r6zg3Mvca89iZC2kK-aN59xI9FQiG7-DVjEv3Acg6Nx5xYw1Uht0ekxquBK55FYrYZSQbfiKvZGt1lCZ1eFxFmVNF2WrLmrD9_WAZbeNIMc_S35Zj2eGayYEQnTh5ssyY4hd6HelirXhfTO-m7pidJhDcLINyc7IbwoEPe7dL8XsptblTgMeJ-r4Sf_xGZ73p8NBNrgc_TqBFyxkVXQ5ZeIUWtVi6T4i61T5p3p-3wGW7viK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3bT9swFIePBpMQe9jGZVsZG0Yg8eSucWzHeURAxbWqVJB4ixxftGpaikj6sr-e4yQtFITEHpNYluNjy9_x8fkZYJ-xRPpIxzR3qaU8VT2aCpVS5yLHYy6RAULu8NVAnt7w81tx2-Zxh1wYbESJNZV1ED_M6jvrW4WB6Be-1-5vNzI9hlyyBO9FEtWx2cOj0ePGCgIPq--NxNHIKSI6m4k1vqgiLEmmXFySXnDm8-OST9af_ie4nre8Pnbypzut8q7590zU8T9_7TN8bHmUHDYDaA3euWIdPjxRKdyA0Wg6rkKGFQnpghPryOBqSJDcww582FwkCL7kpNaiCE-jx5wsMrwPehSWXI7p2aQgjZonOuebcNM_uT46pe1dDFQjkVQ0Uei2xtLjii8sy3nEtVXMasQpG-fOKys49zL32rMYmQspi3njOTcSPZbIxl9guZgU7hsQdPK8YsYaqQ06PyY1XIlccquVMErIDuxhb2TtXCqzOkzOoqzpoqztog4czIyW3TXCHK-W3J3ZNMO5EwIiunCTaZkxxC_0v1LFOvC1sfG8rhgd5xCk7ECyYP15gaDLvfilGP-u9bnTgMmJ2nrTf-zAyvC4n12eDS6-wyoLyRU9TpnYhuXqfup-IPJU-c96iD8Aj6f7BA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Suitable+Cathode+NMP+Replacement+for+Efficient+Sustainable+Printed+Li-Ion+Batteries&rft.jtitle=ACS+applied+energy+materials&rft.au=Sliz%2C+Rafal&rft.au=Valikangas%2C+Juho&rft.au=Silva+Santos%2C+Hellen&rft.au=Vilmi%2C+Pauliina&rft.date=2022-04-25&rft.eissn=2574-0962&rft.volume=5&rft.issue=4&rft.spage=4047&rft_id=info:doi/10.1021%2Facsaem.1c02923&rft_id=info%3Apmid%2F35497684&rft.externalDocID=35497684
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2574-0962&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2574-0962&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2574-0962&client=summon