Multi‐year high‐frequency sampling provides new runoff and biogeochemical insights in a discontinuous permafrost watershed

Permafrost‐underlain watersheds in the subarctic are sensitive to warming as small changes in ground thermal status will alter all components of the hydrological cycle. Globally, observed increases in winter flows and shifting water chemistry have most often been ascribed to permafrost thaw and deep...

Full description

Saved in:
Bibliographic Details
Published inHydrological processes Vol. 37; no. 5
Main Authors Shatilla, Nadine J., Tang, Weigang, Carey, Sean K.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.05.2023
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Permafrost‐underlain watersheds in the subarctic are sensitive to warming as small changes in ground thermal status will alter all components of the hydrological cycle. Globally, observed increases in winter flows and shifting water chemistry have most often been ascribed to permafrost thaw and deepening runoff pathways. However, there remain few studies in headwater catchments that examine coupled flow‐chemistry relations at high frequency over multiple years and seasons to evaluate the implications of environmental change. In this study, we use multi‐year high‐frequency measurement of discharge, specific conductance (SpC) and chromophoric dissolved organic matter (CDOM) along with traditional grab sampling of major ions to understand the sources and pathways of water and evaluate how distinct solutes are mobilized in a well‐studied subarctic basin in Yukon, Canada. Seasonally, the catchment exhibited considerable hysteresis in flow‐solute relations and had both chemostatic and dilution SpC–Q patterns with respect to major ions depending upon season and mobilization CDOM–Q signals. Storm events were extracted from high‐frequency data and normalized C–Q indices were determined and related to flow, catchment and meteorological variables. CDOM–Q events predominantly had an anti‐clockwise hysteresis and increases in DOC concentrations during storms, with some exception in the spring and fall. Conversely, SpC–Q events exhibited clockwise hysteresis and a dilution behaviour during events with less seasonal or inter‐annual variability. Information from this study supports previous conceptual models of thermally regulated runoff generation in a layered soil profile, yet also points to the importance of lateral connectivity and distal sources of solutes. Annual concentration‐discharge relations for specific conductivity (SpC) and chromophoric dissolved organic matter (CDOM) show dynamic inter‐annual and intra‐season variability.
ISSN:0885-6087
1099-1085
DOI:10.1002/hyp.14898