Detailed Atomic Reconstruction of Extended Line Defects in Monolayer MoS2

We study the detailed bond reconstructions that occur in S vacancies within monolayer MoS2 using a combination of aberration-corrected transmission electron microscopy, density functional theory (DFT), and multislice image simulations. Removal of a single S atom causes little perturbation to the sur...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 10; no. 5; pp. 5419 - 5430
Main Authors Wang, Shanshan, Lee, Gun-Do, Lee, Sungwoo, Yoon, Euijoon, Warner, Jamie H
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We study the detailed bond reconstructions that occur in S vacancies within monolayer MoS2 using a combination of aberration-corrected transmission electron microscopy, density functional theory (DFT), and multislice image simulations. Removal of a single S atom causes little perturbation to the surrounding MoS2 lattice, whereas the loss of two S atoms from the same atomic column causes a measurable local contraction. Aggregation of S vacancies into linear line defects along the zigzag direction results in larger lattice compression that is more pronounced as the length of the line defect increases. For the case of two rows of S line vacancies, we find two different types of S atom reconstructions with different amounts of lattice compression. Increasing the width of line defects leads to nanoscale regions of reconstructed MoS2 that are shown by DFT to behave as metallic channels. These results provide important insights into how defect structures could be used for creating metallic tracks within semiconducting monolayer MoS2 films for future applications in electronics and optoelectronics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.6b01673