L-Band Radiometer Observations of Soil Processes in Boreal and Subarctic Environments
The launch of the European Space Agency (ESA)'s Soil Moisture and Ocean Salinity (SMOS) satellite mission in November 2009 opened a new era of global passive monitoring at L-band (1.4-GHz band reserved for radio astronomy). The main objective of the mission is to measure soil moisture and sea s...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 50; no. 5; pp. 1483 - 1497 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.05.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The launch of the European Space Agency (ESA)'s Soil Moisture and Ocean Salinity (SMOS) satellite mission in November 2009 opened a new era of global passive monitoring at L-band (1.4-GHz band reserved for radio astronomy). The main objective of the mission is to measure soil moisture and sea surface salinity; the sole payload is the Microwave Imaging Radiometer using Aperture Synthesis. As part of comprehensive calibration and validation activities, several ground-based L-band radiometers, so-called ETH L-Band radiometers for soil moisture research (ELBARA-II), have been deployed. In this paper, we analyze a comprehensive set of measurements from one ELBARA-II deployment site in the northern boreal forest zone. The focus of this paper is in the detection of the evolution of soil frost (a relevant topic, e.g., for the study of carbon and methane cycles at high latitudes). We investigate the effects that soil freeze/thaw processes have on the L-band signature and present a simple modeling approach to analyze the relation between frost depth and the observed brightness temperature. Airborne observations are used to expand the analysis for different land cover types. Finally, the first SMOS observations from the same period are analyzed. Results show that soil freezing and thawing processes have an observable effect on the L-band signature of soil. Furthermore, the presented emission model is able to relate the observed dynamics in brightness temperature to the increase of soil frost. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2011.2167755 |