Paper-in-Facemask Device for Direct Mass Spectrometry Analysis of Human Respiratory Aerosols and Environmental Exposures via Wearable Continuous-Flow Adsorptive Sampling: A Proof-of-Concept Study
Facemasks are considered safe and wearable devices that cover the human mouth and nose for filtering exhaled aerosols and inhaled environmental exposures; various chemical and environmental residues thus can remain in facemasks. Therefore, direct analysis of residues in facemasks can be used to inve...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 93; no. 41; pp. 13743 - 13748 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
American Chemical Society
19.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Facemasks are considered safe and wearable devices that cover the human mouth and nose for filtering exhaled aerosols and inhaled environmental exposures; various chemical and environmental residues thus can remain in facemasks. Therefore, direct analysis of residues in facemasks can be used to investigate the wearer’s health and behavior. Here, we developed a simple paper-in-facemask sampling method for adsorbing a wearer’s respiratory aerosol and environmental exposures by fixing paper strips at the outside and inside surfaces of facemasks, and the paper strips were then analyzed by paper spray mass spectrometry (PSMS) for directly detecting adsorbed analytes without any sample pretreatment. The applicability of this device was demonstrated by directly analyzing exhaled aerosolized saliva, breath metabolites, and inhalable environmental exposures. The technical aspects, including sampling time, sampling position, paper property, and spray solvent, were investigated. The sampling process was revealed to involve a continuous-flow adsorptive mechanism. These findings motivated us to extend this work and build a wearable sampling device that is capable of simultaneously monitoring both exhaled and inhaled biomarkers in situ to investigate human health and environmental exposure. This work highlights that facemasks are promising platforms for aerosol collection and direct MS analysis, which is expected to be a promising method for monitoring human health, diseases, and behaviors. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.1c03406 |