Deformation Capacity and Shear Strength of Fiber-Reinforced Cement Composite Flexural Members Subjected to Displacement Reversals

The behavior of fiber-reinforced cement composite (FRCC) flexural members under large displacement reversals was experimentally evaluated. Emphasis was placed on estimating the displacement capacity and shear strength of members constructed with strain-hardening FRCC materials. Two types of fibers w...

Full description

Saved in:
Bibliographic Details
Published inJournal of structural engineering (New York, N.Y.) Vol. 133; no. 3; pp. 421 - 431
Main Authors Parra-Montesinos, Gustavo J, Chompreda, Praveen
Format Journal Article
LanguageEnglish
Published American Society of Civil Engineers 01.03.2007
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The behavior of fiber-reinforced cement composite (FRCC) flexural members under large displacement reversals was experimentally evaluated. Emphasis was placed on estimating the displacement capacity and shear strength of members constructed with strain-hardening FRCC materials. Two types of fibers were used: Ultrahigh molecular weight polyethylene fibers and steel hooked fibers in volume fractions ranging between 1.0 and 2.0%. The primary experimental variables were: (1) fiber type and volume fraction; (2) type of cement-based matrix (concrete or mortar); (3) average shear stress demand at flexural yielding; and (4) shear resistance provided through hoops versus total shear demand. All specimens constructed with a strain-hardening FRCC, with or without web reinforcement, exhibited drift capacities of at least 4.0%. A shear stress level of 0.30√ fc′ [MPa] represented a lower bound for which no shear failure occurred in the strain-hardening FRCC test specimens, regardless of the member inelastic rotation demand. In addition, buckling of longitudinal reinforcement in the strain-hardening FRCC members without web reinforcement was not observed up to plastic hinge rotations of 4.0%.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0733-9445
1943-541X
DOI:10.1061/(ASCE)0733-9445(2007)133:3(421)