Comprehensive Analysis of Lysine Acetylome Reveals a Site-Specific Pattern in Rapamycin-Induced Autophagy

Protein acetylation reportedly acts as a key regulator of autophagy. However, up to now, the relationship between acetylome and autophagy has remained unclear. Here stable isotope labeling of amino acids in cell culture and high-throughput quantitative mass spectrometry were used to perform an acety...

Full description

Saved in:
Bibliographic Details
Published inJournal of proteome research Vol. 18; no. 3; pp. 865 - 877
Main Authors Zhou, Zhuo, Chen, Yu, Jin, Mengqi, He, Jianqin, Guli, Ayiding, Yan, Chunlan, Ding, Shiping
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Protein acetylation reportedly acts as a key regulator of autophagy. However, up to now, the relationship between acetylome and autophagy has remained unclear. Here stable isotope labeling of amino acids in cell culture and high-throughput quantitative mass spectrometry were used to perform an acetylome analysis of rapamycin-induced autophagy in vitro. Our data revealed that 2135 sites were quantified on 1081 proteins. During autophagy, 421 sites were significantly regulated on 296 proteins, with 80.8% of sites downregulated and 19.2% upregulated. Motif enrichment analysis revealed five main motifs. Most of the downregulated sites conformed to the classical functional motif of p300/CBP [G-AcK]. Furthermore, acetylation targeted proteins involved mainly in ribosomes, spliceosomes, and AcCoA-related metabolic process. In-depth analysis indicated that most of the acetylation sites were in the critical domain, were functional sites, or could change their enzymatic activity by acetylation, highlighting the importance of site-specific acetylation patterns. Subsequently, we demonstrated that K1549 of p300 was also a functional site that could regulate the autophagic process in vitro. In conclusion, our data reveal a deacetylation-preponderant profile with autophagy. The specificity of the related motifs and the identification of site-specific acetylation patterns will assist searches for potential targets or subsequent mechanism-focused studies to elucidate site-specific protein networks in autophagy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1535-3893
1535-3907
DOI:10.1021/acs.jproteome.8b00533