Two Indium Iodate–Nitrates with Large Birefringence Induced by Hybrid Anionic Functional Groups and Their Favorable Arrangements
Two new indium iodate–nitrates, In(IO3)2(NO3) (1) and [In(IO3)(OH)(H2O)](NO3) (2), were rationally designed through the integration of hybrid anionic functional units. They exhibit large birefringences (1, 0.269; 2, 0.188, at 532 nm) and wide band gaps (1, 4.08 eV; 2, 4.39 eV), which is attribu...
Saved in:
Published in | Inorganic chemistry Vol. 61; no. 8; pp. 3374 - 3378 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.02.2022
|
Online Access | Get full text |
Cover
Loading…
Summary: | Two new indium iodate–nitrates, In(IO3)2(NO3) (1) and [In(IO3)(OH)(H2O)](NO3) (2), were rationally designed through the integration of hybrid anionic functional units. They exhibit large birefringences (1, 0.269; 2, 0.188, at 532 nm) and wide band gaps (1, 4.08 eV; 2, 4.39 eV), which is attributed to the synergistic effect of two types of birefringence-active units, namely, lone-pair IO3 and π-conjugated NO3 anionic groups. Through the substitution of OH and H2O of 2 with IO3, the hydrogen bonds of 2 are eliminated and the birefringence of 1 is greatly enhanced, highlighting the intriguing role of isovalent substitution in the discovery of fascinating optical materials. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0020-1669 1520-510X 1520-510X |
DOI: | 10.1021/acs.inorgchem.2c00079 |