Adapting an Isobaric Tag-Labeled Yeast Peptide Standard to Develop Targeted Proteomics Assays

Targeted proteomics strategies present a streamlined hypothesis-driven approach to analyze specific sets of pathways or disease related proteins. goDig is a quantitative, targeted tandem mass tag (TMT)-based assay that can measure the relative abundance differences for hundreds of proteins directly...

Full description

Saved in:
Bibliographic Details
Published inJournal of proteome research Vol. 23; no. 1; pp. 142 - 148
Main Authors Dong, Kevin D., Schmid, Ernst W., Bomgarden, Ryan D., Choi, Jae H., Gygi, Steven P., Yu, Qing, Paulo, Joao A.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 05.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Targeted proteomics strategies present a streamlined hypothesis-driven approach to analyze specific sets of pathways or disease related proteins. goDig is a quantitative, targeted tandem mass tag (TMT)-based assay that can measure the relative abundance differences for hundreds of proteins directly from unfractionated mixtures. Specific protein groups or entire pathways of up to 200 proteins can be selected for quantitative profiling, while leveraging sample multiplexing permits the simultaneous analysis of up to 18 samples. Despite these benefits, implementing goDig is not without challenges, as it requires access to an instrument application programming interface (iAPI), an elution order and spectral library, a web-based method builder, and dedicated companion software. In addition, the absence of an example test assay may dissuade researchers from testing or implementing goDig. Here, we repurpose the TKO11 standardwhich is commercially available but may also be assembled in-laband establish it as a de facto test assay for goDig. We build a proteome-wide goDig yeast library, quantify protein expression across several gene ontology (GO) categories, and compare these results to a fully fractionated yeast gold-standard data set. Essentially, we provide a guide detailing the goDig-based quantification of TKO11, which can also be used as a template for user-defined assays in other species.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1535-3893
1535-3907
DOI:10.1021/acs.jproteome.3c00493