Stronger Together! Mechanistic Investigation into Synergistic Effects during Homogeneous Carbon Dioxide Hydrogenation Using a Heterobimetallic Catalyst

A series of group 6 heterobimetallic complexes [M0;IrIII] (M = Cr, Mo, W) were synthesized and fully characterized, and the catalytic behavior was studied. The heterobimetallic complex [Mo0;IrIII] (C1) was by far the most active and has shown a considerable synergistic effect, with both metals activ...

Full description

Saved in:
Bibliographic Details
Published inInorganic chemistry Vol. 62; no. 32; pp. 12750 - 12761
Main Authors Fickenscher, Zeno B. G., Lönnecke, Peter, Müller, Anna K., Baumann, Wolfgang, Kirchner, Barbara, Hey-Hawkins, Evamarie
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 14.08.2023
Online AccessGet full text

Cover

Loading…
More Information
Summary:A series of group 6 heterobimetallic complexes [M0;IrIII] (M = Cr, Mo, W) were synthesized and fully characterized, and the catalytic behavior was studied. The heterobimetallic complex [Mo0;IrIII] (C1) was by far the most active and has shown a considerable synergistic effect, with both metals actively participating in homogeneous carbon dioxide hydrogenation, leading to formate salts. Based on theoretical calculations, the synergistic interaction is due to Pauli repulsion, lowering the transition state and thus enabling higher catalytic activity. The mechanism of both the hydrogenation itself and the synergistic interaction was studied by NMR spectroscopy, kinetic measurements, and theoretical calculations. The homogeneous nature of the reaction was proven using in situ high-pressure (HP) NMR experiments. The same experiments also showed that the octahedral Mo­(CO)3P3 moiety of the complex is stable under the reaction conditions. The hydride complex is the resting state because the hydride transfer is the rate-determining step. This is supported by kinetic measurements, in situ HP NMR experiments, and theoretical calculations and is in contrast to the monometallic IrIII counterpart of C1.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.3c01303