Efficient CO Oxidation at Low Temperature on Au(111)
The rate of CO oxidation to CO2 depends strongly on the reaction temperature and characteristics of the oxygen overlayer on Au(111). The factors that contribute to the temperature dependence in the oxidation rate are (1) the residence time of CO on the surface, (2) the island size containing Au−O co...
Saved in:
Published in | The journal of physical chemistry. B Vol. 110; no. 40; pp. 19833 - 19838 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
12.10.2006
|
Online Access | Get full text |
Cover
Loading…
Summary: | The rate of CO oxidation to CO2 depends strongly on the reaction temperature and characteristics of the oxygen overlayer on Au(111). The factors that contribute to the temperature dependence in the oxidation rate are (1) the residence time of CO on the surface, (2) the island size containing Au−O complexes, and (3) the local properties, including the degree of order of the oxygen layer. Three different types of oxygendefined as chemisorbed oxygen, a surface oxide, and a bulk oxideare identified and shown to have different reactivity. The relative populations of the various oxygen species depend on the preparation temperature and the oxygen coverage. The highest rate of CO oxidation was observed for an initial oxygen coverage of 0.5 monolayers that was deposited at 200 K where the density of chemisorbed oxygen is maximized. The rate decreases when two-dimensional islands of the surface oxide are populated and further decreases when three-dimensional bulk gold oxide forms. Our results are significant for designing catalytic processes that use Au for CO oxidation, because they suggest that the most efficient oxidation of CO occurs at low temperatureeven below room temperatureas long as oxygen could be adsorbed on the surface. |
---|---|
Bibliography: | ark:/67375/TPS-X4L0ST31-G Part of the special issue “Charles B. Harris Festschrift”. istex:9735DB6387BA07AD447A0884EF991F35487435E2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/jp0616213 |