Longitudinal Urinary Protein Variability in Participants of the Space Flight Simulation Program

Urine is a valuable material for the diagnosis of renal pathologies and to investigate the effects of their treatment. However, the variability in protein abundance in the context of normal homeostasis remains a major challenge in urinary proteomics. In this study, the analysis of urine samples coll...

Full description

Saved in:
Bibliographic Details
Published inJournal of proteome research Vol. 15; no. 1; pp. 114 - 124
Main Authors Khristenko, Nina A, Larina, Irina M, Domon, Bruno
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 04.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Urine is a valuable material for the diagnosis of renal pathologies and to investigate the effects of their treatment. However, the variability in protein abundance in the context of normal homeostasis remains a major challenge in urinary proteomics. In this study, the analysis of urine samples collected from healthy individuals, rigorously selected to take part in the MARS-500 spaceflight simulation program, provided a unique opportunity to estimate normal concentration ranges for an extended set of urinary proteins. In order to systematically identify and reliably quantify peptides/proteins across a large sample cohort, a targeted mass spectrometry method was developed. The performance of parallel reaction monitoring (PRM) analyses was improved by implementing tight control of the monitoring windows during LC–MS/MS runs, using an on-the-fly correction routine. Matching the experimentally obtained MS/MS spectra with reference fragmentation patterns allowed dependable peptide identifications to be made. Following optimization and evaluation, the targeted method was applied to investigate protein abundance variability in 56 urine samples, collected from six volunteers participating in the MARS-500 program. The intrapersonal protein concentration ranges were determined for each individual and showed unexpectedly high abundance variation, with an average difference of 1 order of magnitude.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1535-3893
1535-3907
DOI:10.1021/acs.jproteome.5b00594