Establishing the Principles of Recognition in the Adenine-Binding Region of an Aminoglycoside Antibiotic Kinase [APH(3‘)-IIIa]

The protein-based molecular recognition of the adenine ring has implications throughout biological systems. In this paper, we discuss the adenine-binding region of an aminoglycoside antibiotic kinase [APH(3‘)-IIIa], which serves as an excellent model system for proteins that bind the adenine ring. T...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 44; no. 37; pp. 12445 - 12453
Main Authors Boehr, David D, Farley, Adam R, LaRonde, Frank J, Murdock, Tera Rica, Wright, Gerard D, Cox, James R
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 20.09.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The protein-based molecular recognition of the adenine ring has implications throughout biological systems. In this paper, we discuss the adenine-binding region of an aminoglycoside antibiotic kinase [APH(3‘)-IIIa], which serves as an excellent model system for proteins that bind the adenine ring. This enzyme employs a hydrogen-bonding network involving water molecules along with enzyme backbone/side-chain atoms and a π−π stacking interaction to recognize the adenine ring. Our approach utilized site-directed mutagenesis, adenosine analogues and a variety of biophysical methods to probe the contacts in the adenine-binding region of APH(3‘)-IIIa. The results point to the polar nature of an adenine-Met90 contact in this binding pocket and the important role that Met90, the “gatekeeper” residue in structurally similar Ser/Thr protein kinases, plays in adenine binding. The results also suggest that small changes in the structure of the adenine ring can lead to significant changes in the ability of these analogues to occupy the adenine-binding region of the enzyme. Additional computational experiments indicate that both size and electronic factors are important in the binding of aromatic systems in this interaction-rich pocket. The principles governing adenine recognition established in this study may be applied to other protein−ligand complexes and used to navigate future studies directed at discovering potent and selective inhibitors of APH-type enzymes.
Bibliography:istex:618AFB4890A7CF06100FD0AC6C1952A82C479337
This research was supported by a grant from the Canadian Institutes of Health Research to G.D.W. (MT-13536) and a grant from the American Chemical Society−Petroleum Research Fund to J.R.C. (39738-B). G.D.W. holds a Canada Research Chair in Antibiotic Biochemistry.
ark:/67375/TPS-PF0B0RXJ-X
ISSN:0006-2960
1520-4995
DOI:10.1021/bi051085p