Evaluating dual porosity of pelletized diatomaceous earth using bimodal soil-water characteristic curve functions

Soil-water characteristic curve data for specimens containing either ~1 mm or ~2 mm diameter pellets of processed diatomaceous earth are measured using a variety of methods (Tempe cell, pressure plate, filter paper, and chilled-mirror psychrometer). The measured soil-water characteristic curve data...

Full description

Saved in:
Bibliographic Details
Published inCanadian geotechnical journal Vol. 38; no. 1; pp. 53 - 66
Main Authors Burger, Craig A, Shackelford, Charles D
Format Journal Article
LanguageEnglish
Published Ottawa, Canada NRC Research Press 01.02.2001
National Research Council of Canada
Canadian Science Publishing NRC Research Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Soil-water characteristic curve data for specimens containing either ~1 mm or ~2 mm diameter pellets of processed diatomaceous earth are measured using a variety of methods (Tempe cell, pressure plate, filter paper, and chilled-mirror psychrometer). The measured soil-water characteristic curve data are bimodal, reflecting both the microscopic porosity region within the individual pellets, or intrapellet porosity, and the macroscopic porosity region between the pellets, or interpellet porosity. The bimodal distributions are consistent with scanning electron micrographs that show the existence of microscopic pores within each pellet, and the relatively high total porosities (0.725 and 0.764) for the coarse-grained diatomaceous earth specimens. The measured soil-water characteristic curve data are fit with modified forms of the Brooks–Corey, van Genuchten, and Fredlund–Xing soil-water characteristic curve functions to account for the bimodal shapes of the measured data. The average microscopic porosities resulting from the curve fits represent 45.0 and 47.9% of the total porosities for the two diatomaceous earth materials. These percentages of microscopic pore space are consistent with the product literature value of approximately 50% for the same materials based on mercury intrusion porosimetry. Thus, the results illustrate the application of bimodal soil-water characteristic curve functions for determining the microscopic and macroscopic portions of the total porosity of dual-porosity media, such as pelletized diatomaceous earth.Key words: bimodal soil-water characteristic curves, diatomaceous earth, dual porosity, macroporosity, microporosity, soil-water characteristic curves (SWCC), soil suction.
ISSN:0008-3674
1208-6010
DOI:10.1139/t00-084