Multifrequency Electron Paramagnetic Resonance Characterization of PpoA, a CYP450 Fusion Protein that Catalyzes Fatty Acid Dioxygenation

PpoA is a fungal dioxygenase that produces hydroxylated fatty acids involved in the regulation of the life cycle and secondary metabolism of Aspergillus nidulans. It was recently proposed that this novel enzyme employs two different heme domains to catalyze two separate reactions: within a heme pero...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 133; no. 23; pp. 9052 - 9062
Main Authors Fielding, Alistair J, Brodhun, Florian, Koch, Christian, Pievo, Roberta, Denysenkov, Vasyl, Feussner, Ivo, Bennati, Marina
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 15.06.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:PpoA is a fungal dioxygenase that produces hydroxylated fatty acids involved in the regulation of the life cycle and secondary metabolism of Aspergillus nidulans. It was recently proposed that this novel enzyme employs two different heme domains to catalyze two separate reactions: within a heme peroxidase domain, linoleic acid is oxidized to (8R)-hydroperoxyoctadecadienoic acid [(8R)-HPODE]; in the second reaction step (8R)-HPODE is isomerized within a P450 heme thiolate domain to 5,8-dihydroxyoctadecadienoic acid. In the present study, pulsed EPR methods were applied to find spectroscopic evidence for the reaction mechanism, thought to involve paramagnetic intermediates. We observe EPR resonances of two distinct heme centers with g-values typical for Fe(III) S = 5/2 high-spin (HS) and Fe(III) S = 1/2 low-spin (LS) hemes. 14N ENDOR spectroscopy on the S = 5/2 signal reveals resonances consistent with an axial histidine ligation. Reaction of PpoA with the substrate leads to the formation of an amino acid radical on the early millisecond time scale concomitant to a substantial reduction of the S = 5/2 heme signal. High-frequency EPR (95- and 180-GHz) unambiguously identifies the new radical as a tyrosyl, based on g-values and hyperfine couplings from spectral simulations. The radical displays enhanced T 1-spin–lattice relaxation due to the proximity of the heme centers. Further, EPR distance measurements revealed that the radical is distributed among the monomeric subunits of the tetrameric enzyme at a distance of approximately 5 nm. The identification of three active paramagnetic centers involved in the reaction of PpoA supports the previously proposed reaction mechanism based on radical chemistry.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
DOI:10.1021/ja202207t