NMR Characterization of Membrane Protein−Detergent Micelle Solutions by Use of Microcoil Equipment

Using microcoil NMR technology, the uniformly 2H,15N-labeled integral membrane protein OmpX, and the phosphocholine derivative detergent Fos-10 (n-decylphosphocholine), we investigated solutions of mixed protein−detergent micelles to determine the influence of the detergent concentration on the NMR...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 131; no. 51; pp. 18450 - 18456
Main Authors Stanczak, Pawel, Horst, Reto, Serrano, Pedro, Wüthrich, Kurt
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 30.12.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Using microcoil NMR technology, the uniformly 2H,15N-labeled integral membrane protein OmpX, and the phosphocholine derivative detergent Fos-10 (n-decylphosphocholine), we investigated solutions of mixed protein−detergent micelles to determine the influence of the detergent concentration on the NMR spectra of the protein. In a first step, we identified key parameters that influence the composition of the micelle solutions, which resulted in a new protocol for the preparation of well-defined concentrated protein solutions. This led to the observation that high-quality 2D [15N,1H]-transverse relaxation-optimized spectroscopy (TROSY) spectra of OmpX reconstituted in mixed micelles with Fos-10 were obtained only in a limited range of detergent concentrations. Outside of this range from about 90−180 mM, we observed a significant decrease of the average peak intensity. Relaxation-optimized NMR measurements of the rotational and translational diffusion coefficients of the OmpX/Fos-10 mixed micelles, D r and D t, respectively, then showed that the stoichiometry and the effective hydrodynamic radius of the protein-containing micelles are not significantly affected by high Fos-10 concentrations and that the deterioration of NMR spectra is due to the increased viscosity at high detergent concentrations. The paper thus provides a basis for refined guidelines on the preparation of integral membrane proteins for structural studies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
DOI:10.1021/ja907842u