Toward Understanding the Mechanism of the Complex Cyclization Reaction Catalyzed by Imidazole Glycerolphosphate Synthase:  Crystal Structures of a Ternary Complex and the Free Enzyme

Imidazole glycerol phosphate synthase catalyzes formation of the imidazole ring in histidine biosynthesis. The enzyme is also a glutamine amidotransferase, which produces ammonia in a glutaminase active site and channels it through a 30-Å internal tunnel to a cyclase active site. Glutaminase activit...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 42; no. 23; pp. 7003 - 7012
Main Authors Chaudhuri, Barnali N., Lange, Stephanie C., Myers, Rebecca S., Davisson, V. Jo, Smith, Janet L.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 17.06.2003
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Imidazole glycerol phosphate synthase catalyzes formation of the imidazole ring in histidine biosynthesis. The enzyme is also a glutamine amidotransferase, which produces ammonia in a glutaminase active site and channels it through a 30-Å internal tunnel to a cyclase active site. Glutaminase activity is impaired in the resting enzyme, and stimulated by substrate binding in the cyclase active site. The signaling mechanism was investigated in the crystal structure of a ternary complex in which the glutaminase active site was inactivated by a glutamine analogue and the unstable cyclase substrate was cryo-trapped in the active site. The orientation of N 1-(5‘-phosphoribulosyl)-formimino-5-aminoimidazole-4-carboxamide ribonucleotide in the cyclase active site implicates one side of the cyclase domain in signaling to the glutaminase domain. This side of the cyclase domain contains the interdomain hinge. Two interdomain hydrogen bonds, which do not exist in more open forms of the enzyme, are proposed as molecular signals. One hydrogen bond connects the cyclase domain to the substrate analogue in the glutaminase active site. The second hydrogen bond connects to a peptide that forms an oxyanion hole for stabilization of transient negative charge during glutamine hydrolysis. Peptide rearrangement induced by a fully closed domain interface is proposed to activate the glutaminase by unblocking the oxyanion hole. This interpretation is consistent with biochemical results [Myers, R. S., et al., (2003) Biochemistry 42, 7013−7022, the accompanying paper in this issue] and with structures of the free enzyme and a binary complex with a second glutamine analogue.
Bibliography:istex:D8CB299EBC1717ED197E6FE9046DBAA5CB22E477
Structures are available in the Protein Data Bank with accession codes 1OX5 for the ternary complex, 1OX4 for the DON-inactivated enzyme, and 1OX6 for the apo-enzyme.
ark:/67375/TPS-1N9R9PL7-X
This work was supported by NIH Grants DK42303 and GM24268 to J.L.S. and GM45756 to V.J.D.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-2960
1520-4995
DOI:10.1021/bi034320h