Influence of Chirality of the Preceding Acyl Moiety on the cis/trans Ratio of the Proline Peptide Bond

We report that the cis/trans ratio of the proline peptide bond can be strongly influenced by the chirality of the acyl residue preceding proline. Acyl moieties derived from (2S)-2,6-dimethyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazine-2-carboxylic acid (8) and (2R)-3-methoxy-2-methyl-2-(4-methyl-2-nitrophe...

Full description

Saved in:
Bibliographic Details
Published inJournal of organic chemistry Vol. 66; no. 21; pp. 7044 - 7050
Main Authors Breznik, Matej, Grdadolnik, Simona Golič, Giester, Gerald, Leban, Ivan, Kikelj, Danijel
Format Journal Article
LanguageEnglish
Published WASHINGTON American Chemical Society 19.10.2001
Amer Chemical Soc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We report that the cis/trans ratio of the proline peptide bond can be strongly influenced by the chirality of the acyl residue preceding proline. Acyl moieties derived from (2S)-2,6-dimethyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazine-2-carboxylic acid (8) and (2R)-3-methoxy-2-methyl-2-(4-methyl-2-nitrophenoxy)-3-oxopropanoic acid (5) in acyl-Pro molecules influence isomerization of the proline peptide bond constraining the ω dihedral angle to the trans orientation. Structures of benzyl (2S)-1-{[(2S)-2,6-dimethyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl]carbonyl}-2-pyrrolidinecarboxylate (3) derived from 2D 1H NMR conformational analysis and crystallographic data exhibit only the trans conformation of proline peptide bond. On the other hand the diastereomer 4, which contains an (R) acyl moiety, exhibits two sets of signals in 1H NMR spectra. The signals were assigned to trans (72%) and cis (28%) conformers. Crystallographic analysis of 4 showed that only the cis conformation is present in the crystalline state. The 1H NMR chemical shift pattern of three sets of signals observed in 2 was observed also in benzyl (2S)-1-[(2R/S)-3-methoxy-2-methyl-2-(4-methyl-2-nitrophenoxy)-3-oxopropanoyl]-2-pyrrolidinecarboxylate. (R)-Carboxylic acid 5, after coupling with (S)-ProOBn, yielded benzyl (2S)-1-[(2R)-3-methoxy-2-methyl-2-(4-methyl-2-nitrophenoxy)-3-oxopropanoyl]-2-pyrrolidinecarboxylate (6), which in DMSO-d 6 exhibited only the trans conformation of the proline peptide bond. These results suggest that in these particular cases acyl-Pro peptide bond isomerization is strongly influenced by the stereochemistry of the acyl residue preceding proline. (2S)-2,6-Dimethyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazine-2-carboxylic acid (8) and (2R)-3-methoxy-2-methyl-2-(4-methyl-2-nitrophenoxy)-3-oxopropanoic acid (5) are promising chiral peptidomimetic building blocks that can be used as acyl moieties to force the proline peptide bond into the trans conformation in a variety of acyl-Pro molecules.
Bibliography:ark:/67375/TPS-V021LW7N-J
istex:D7FA23665A60540570097B3EB53929E6437529BC
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3263
1520-6904
DOI:10.1021/jo0159439