Computational movement analysis

This SpringerBrief discusses the characteristics of spatiotemporal movement data, including uncertainty and scale. It investigates three core aspects of Computational Movement Analysis: Conceptual modeling of movement and movement spaces, spatiotemporal analysis methods aiming at a better understand...

Full description

Saved in:
Bibliographic Details
Main Author Laube, Patrick
Format eBook Book
LanguageEnglish
Published Cham Springer 2014
Springer International Publishing AG
Springer International Publishing
Edition1
SeriesSpringerBriefs in Computer Science
Subjects
Online AccessGet full text
ISBN9783319102672
3319102672
9783319102689
3319102680
ISSN2191-5768
2191-5776
DOI10.1007/978-3-319-10268-9

Cover

More Information
Summary:This SpringerBrief discusses the characteristics of spatiotemporal movement data, including uncertainty and scale. It investigates three core aspects of Computational Movement Analysis: Conceptual modeling of movement and movement spaces, spatiotemporal analysis methods aiming at a better understanding of movement processes (with a focus on data mining for movement patterns), and using decentralized spatial computing methods in movement analysis. The author presents Computational Movement Analysis as an interdisciplinary umbrella for analyzing movement processes with methods from a range of fields including GIScience, spatiotemporal databases and data mining. Key challenges in Computational Movement Analysis include bridging the semantic gap, privacy issues when movement data involves people, incorporating big and open data, and opportunities for decentralized movement analysis arising from the internet of things. The interdisciplinary concepts of Computational Movement Analysis make this an important book for professionals and students in computer science, geographic information science and its application areas, especially movement ecology and transportation research.
Bibliography:Including references and index
ISBN:9783319102672
3319102672
9783319102689
3319102680
ISSN:2191-5768
2191-5776
DOI:10.1007/978-3-319-10268-9