Spheroidal Microparticle Monolayers Characterized by Streaming Potential Measurements
An efficient method was developed enabling the synthesis of spheroidal polymer microparticles. Thorough physicochemical characteristics of the particles were acquired comprising the size, shape, electrophoretic mobility, and the diffusion coefficient. The particles were monodisperse, and their shape...
Saved in:
Published in | Langmuir Vol. 33; no. 38; pp. 9916 - 9925 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.09.2017
|
Online Access | Get full text |
Cover
Loading…
Summary: | An efficient method was developed enabling the synthesis of spheroidal polymer microparticles. Thorough physicochemical characteristics of the particles were acquired comprising the size, shape, electrophoretic mobility, and the diffusion coefficient. The particles were monodisperse, and their shape was well-fitted by prolate spheroids having the axis ratio equal to 4.17. Knowing the diffusion coefficient, their hydrodynamic diameter of 449 nm was calculated, which matched the value derived from Brenner’s analytical expression. Particle deposition kinetics on mica and silicon/silica substrates, modified by poly(allylamine hydrochloride) (PAH) adsorption, was studied by optical microscopy and AFM imaging. The validity of the random sequential adsorption model was confirmed. Additionally, monolayers of the particles on these substrates were thoroughly characterized in situ by the streaming potential measurements for different ionic strengths. These measurements confirmed that the ζ potential change with the spheroidal particle coverage is less abrupt than for spheres and agrees with theoretical predictions. Exploiting these results, a useful analytical expression was derived that allows one to calculate the spheroidal particle coverage in situ via the streaming potential measurements. This expression, especially accurate for low coverage range, can be used for a quantitative interpretation of adsorption and desorption kinetics of anisotropic macromolecules, e.g., proteins on solid substrates. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/acs.langmuir.7b02496 |