Discovery of Novel Bicyclic Imidazolopyridine-Containing Human Urate Transporter 1 Inhibitors as Hypouricemic Drug Candidates with Improved Efficacy and Favorable Druggability

Lesinurad is a uricosuric agent for the treatment of hyperuricemia associated with gout, which was found lacking in efficacy and safety. Here, scaffold hopping and molecular hybridization were exploited to modify all the structural components of lesinurad, and 36 novel compounds bearing bicyclic imi...

Full description

Saved in:
Bibliographic Details
Published inJournal of medicinal chemistry Vol. 65; no. 5; pp. 4218 - 4237
Main Authors Zhao, Tong, Zhang, Jian, Tao, Yucen, Liao, Hui, Zhao, Fabao, Liang, Ruipeng, Shi, Xiaoyu, Zhang, Zhijiao, Ji, Jianbo, Wu, Ting, Pang, Jianxin, Liu, Xinyong, Zhan, Peng
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 10.03.2022
Online AccessGet full text

Cover

Loading…
More Information
Summary:Lesinurad is a uricosuric agent for the treatment of hyperuricemia associated with gout, which was found lacking in efficacy and safety. Here, scaffold hopping and molecular hybridization were exploited to modify all the structural components of lesinurad, and 36 novel compounds bearing bicyclic imidazolopyridine core were obtained. In a mouse model of acute hyperuricemia, 29 compounds demonstrated increased serum uric acid (SUA)-reducing activity; SUA was treated with 12, 23, and 29 about fourfold lower compared with that of lesinurad. Moreover, 23 exhibited stronger URAT1 inhibition activity (IC50 = 1.36 μM) than lesinurad (IC50 = 5.54 μM). Additionally, 23 showed favorable safety profiles, and no obvious acute toxicity was observed in Kunming mice under a single dose of 1000 mg·kg–1. 23 also achieved excellent pharmacokinetic properties with the oral bioavailability of 59.3%. Overall, all the results indicated that 23 is a promising drug candidate in the treatment of hyperuricemia and gout.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-2623
1520-4804
DOI:10.1021/acs.jmedchem.1c02057