Parvifoline Derivatives as Tubulin Polymerization Inhibitors

A series of functionalized sesquiterpenoids derived from benzocyclooctene, including natural parvifoline (1), isoparvifoline (3), epoxyparvifoline (5), epoxyisoparvifoline (7), 8,12-oxyparfivoline (9), 8,14-oxyparvifoline (11), and the respective benzoyl derivatives 2, 4, 6, 8, 10, and 12, were prep...

Full description

Saved in:
Bibliographic Details
Published inJournal of natural products (Washington, D.C.) Vol. 82; no. 4; pp. 840 - 849
Main Authors Silva-García, Edna M, Cerda-García-Rojas, Carlos M, del Río, Rosa E, Joseph-Nathan, Pedro
Format Journal Article
LanguageEnglish
Published WASHINGTON American Chemical Society and American Society of Pharmacognosy 26.04.2019
Amer Chemical Soc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A series of functionalized sesquiterpenoids derived from benzocyclooctene, including natural parvifoline (1), isoparvifoline (3), epoxyparvifoline (5), epoxyisoparvifoline (7), 8,12-oxyparfivoline (9), 8,14-oxyparvifoline (11), and the respective benzoyl derivatives 2, 4, 6, 8, 10, and 12, were prepared and tested for their inhibitory effect on the in vitro α,β-tubulin polymerization process. The structural analysis and characterization of the new compounds 5–7 and 9–12 were achieved by 1D and 2D NMR spectroscopy, mass spectrometry, and X-ray diffraction analysis of 6, 7, and 9. Preparation of 9 and 12 involved molecular rearrangements of the epoxide group with transannular 1,5-hydride shifts. At 10 μM compounds 1, 5, and 8 inhibited the polymerization of the α,β-tubulin heterodimer by 24%, 49%, and 90% as compared to colchicine. These compounds were subjected to docking analysis that supported their interactions in a colchicine binding site located in the α-tubulin subunit, in the pocket formed by Phe296, Pro298, Pro307, His309, Tyr312, Lys338, Thr340, Ile341, and Gln342. Competitive inhibition assays with colchicine were also performed for the three compounds, which supported their binding at the colchicine secondary site in α-tubulin. Also, evaluations of their cytotoxicity on MCF7 breast carcinoma, HeLa cervix carcinoma, and HCT 116 colon carcinoma cell lines were carried out and showed that 8 is active against the HeLa and HCT 116 cell lines with IC50 3.3 ± 0.2 and 5.0 ± 0.5 μM, respectively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0163-3864
1520-6025
DOI:10.1021/acs.jnatprod.8b00860