Receptor-Mediated In Vivo Targeting of Breast Cancer Cells with 17α-Ethynylestradiol-Conjugated Silica-Coated Gold Nanoparticles

Efficient therapies for breast cancer remain elusive because of the lack of strategies for targeted transport and receptor-mediated uptake of synthetic drug molecules by cancer cells. Conjugation of nanoparticles (NPs) with active targeting ligands enabling selective molecular recognition of antigen...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 36; no. 48; pp. 14819 - 14828
Main Authors Renner, Alexander M, Ilyas, Shaista, Schlößer, Hans A, Szymura, Annika, Roitsch, Stefan, Wennhold, Kerstin, Mathur, Sanjay
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 08.12.2020
Online AccessGet full text

Cover

Loading…
More Information
Summary:Efficient therapies for breast cancer remain elusive because of the lack of strategies for targeted transport and receptor-mediated uptake of synthetic drug molecules by cancer cells. Conjugation of nanoparticles (NPs) with active targeting ligands enabling selective molecular recognition of antigens expressed on the surface of cancer cells is promising for localization and treatment of malignant cells. In this study, covalent attachment of synthetic estrogen 17α-ethynylestradiol on the silica (SiO2) shell of silica-gold NPs (SiO2@Au) was undertaken to improve the cancer-targeting ability of the nano-biotags. Chemical and structural analysis of the bioconjugates examined in solution (UV–vis and ξ-potential) and solid state (Fourier transform infrared spectroscopy, X-ray diffractometry, and transmission electron microscopy) confirmed the identity of the carrier particles and surface-bound ligands. The mesoporous silica shell served as a reservoir for anticancer drugs (doxorubicin and quercetin) and to facilitate covalent attachment of receptor molecules by click chemistry protocols. The chemoselective recognition between the nanoconjugates and cell membranes was successfully demonstrated by the accumulation of nanoprobes in the tumor tissue of mice with subcutaneous breast cancer, whereas healthy cells were unaffected. The drug release studies showed sustained release kinetics over several weeks. These findings elaborate the exceptional selectivity and potential of estrogen-coated nano-biolabels in efficient diagnosis and detection of breast cancer cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.0c02820