Effect of Water Adsorption on the Frictional Properties of Hydrogenated Amorphous Carbon Films in Various Relative Humidities
The tribological properties of hydrogenated amorphous carbon (a-C:H) films in ambient air were investigated from the microstructural point of view. a-C:H films with various microstructures (polymer-like, diamond-like, and graphite-like structures) were prepared, and the thickness of water adsorption...
Saved in:
Published in | Langmuir Vol. 37; no. 3; pp. 1012 - 1024 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.01.2021
|
Online Access | Get full text |
Cover
Loading…
Summary: | The tribological properties of hydrogenated amorphous carbon (a-C:H) films in ambient air were investigated from the microstructural point of view. a-C:H films with various microstructures (polymer-like, diamond-like, and graphite-like structures) were prepared, and the thickness of water adsorption layers on the films was measured. The adsorption behavior of water molecules on a-C:H films could be expressed with the Brunauer–Emmett–Teller (BET) isotherm, while the thicknesses of icelike and liquidlike water layers adsorbed on the films could be determined using the BET parameters C and n m a. The polymer-like films exhibited the thickest icelike and liquidlike water adsorption layers, which decreased as the film structure changed to a diamond-like or a graphite-like structure. A strong relationship was observed between the thickness of water adsorption layers and the surface oxidation of the a-C:H films. The friction coefficient of the films in ambient air can be well explained by the surface oxidation and the thickness of water adsorption layers. Polymer-like films showed high friction coefficients due to the formation of a thick water layer on the films originated from the high surface oxidation of the film surface, whereas the graphite-like film exhibited a low friction coefficient due to low oxidation and a thin water adsorption layer. Furthermore, friction tests between the a-C:H films with different microstructures under ambient air were performed to determine the lowest friction pair in various relative humidities (RHs). |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/acs.langmuir.0c02416 |