Dissipative Particle Dynamics with an Effective Pair Potential from Integral Equation Theory of Molecular Liquids

We present a method of DPD simulation based on a coarse-grained effective pair potential obtained from the DRISM-KH molecular theory of solvation. The theory is first used to calculate the radial distribution functions of all-atom solute monomers in all-atom solvent and then to invert them into an e...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 118; no. 41; pp. 12034 - 12049
Main Authors Kobryn, Alexander E, Nikolić, Dragan, Lyubimova, Olga, Gusarov, Sergey, Kovalenko, Andriy
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.10.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present a method of DPD simulation based on a coarse-grained effective pair potential obtained from the DRISM-KH molecular theory of solvation. The theory is first used to calculate the radial distribution functions of all-atom solute monomers in all-atom solvent and then to invert them into an effective pair potential between coarse-grained beads such that their fluid without solvent accounts for molecular specificities and solvation effects in the all-atom system. Bonded interactions are sampled in relatively short MD of the all-atom system and modeled with best multi-Gaussian fit. Replacing the heuristically defined conservative force potential in DPD, the coarse-grained effective pair potential is free from the artificial restrictions on potential range and shape and on equal volume of solute and solvent blobs inherent in standard DPD. The procedure is flexible in specifying coarse-grained mapping and enormously increases computational efficiency by eliminating solvent. The method is validated on polystyrene chains of various length in toluene at finite concentrations for room and polystyrene glass transition temperature. It yields the chain elastic properties and diffusion coefficient in good agreement with experiment and all-atom MD simulations. DPD with coarse-grained effective pair potential is capable of predicting both structural and dynamic properties of polymer solutions and soft matter with high accuracy and computational efficiency.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1520-6106
1520-5207
DOI:10.1021/jp503981p