Self-Assembly of Intramolecular Charge-Transfer Compounds into Functional Molecular Systems

Highly polarized compounds exhibiting intramolecular charge transfer (ICT) are used widely as nonlinear optical (NLO) materials and red emitters and in organic light emitting diodes. Low-molecular-weight donor/acceptor (D/A)-substituted ICT compounds are ideal candidates for use as the building bloc...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 47; no. 4; pp. 1186 - 1198
Main Authors Li, Yongjun, Liu, Taifeng, Liu, Huibiao, Tian, Mao-Zhong, Li, Yuliang
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 15.04.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Highly polarized compounds exhibiting intramolecular charge transfer (ICT) are used widely as nonlinear optical (NLO) materials and red emitters and in organic light emitting diodes. Low-molecular-weight donor/acceptor (D/A)-substituted ICT compounds are ideal candidates for use as the building blocks of hierarchically structured, multifunctional self-assembled supramolecular systems. This Account describes our recent studies into the development of functional molecular systems with well-defined self-assembled structures based on charge-transfer (CT) interactions. From solution (sensors) to the solid state (assembled structures), we have fully utilized intrinsic and stimulus-induced CT interactions to construct these functional molecular systems. We have designed some organic molecules capable of ICT, with diversity and tailorability, that can be used to develop novel self-assembled materials. These ICT organic molecules are based on a variety of simple structures such as perylene bisimide, benzothiadiazole, tetracyanobutadiene, fluorenone, isoxazolone, BODIPY, and their derivatives. The degree of ICT is influenced by the nature of both the bridge and the substituents. We have developed new methods to synthesize ICT compounds through the introduction of heterocycles or heteroatoms to the π-conjugated systems or through extending the conjugation of diverse aromatic systems via another aromatic ring. Combining these ICT compounds featuring different D/A units and different degrees of conjugation with phase transfer methodologies and solvent-vapor techniques, we have self-assembled various organic nanostructures, including hollow nanospheres, wires, tubes, and ribbonlike architectures, with controllable morphologies and sizes. For example, we obtained a noncentrosymmetric microfiber structure that possessed a permanent dipole along its fibers’ long axis and a transition dipole perpendicular to it; the independent NLO responses of this material can be separated and tuned spectroscopically and spatially. The ready processability and intrinsically high NLO efficiency of these microfibers offer great opportunities for applications in photonic devices. We have also designed molecular sensors based on changes in the efficiency of the ICT process upon complexation of an analyte with the D or A moieties in the ICT compounds. Such sensors, which display evident Stokes shifts or changes in quantum yields or fluorescence lifetimes, have promise for applications in chemical and biological recognition and sensing. In this Account, we shed light on the structure–function relationships of these functional molecular systems with well-defined self-assembled structures based on ICT interactions. The encouraging results that we have obtained suggest that such self-assembled ICT molecular materials can guide the design of new nanostructures and materials from organic systems, and that these materials, across a range of compositions, sizes, shapes, and functionalities, can potentially be applied in the fields of electronics, optics, and optoelectronics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0001-4842
1520-4898
DOI:10.1021/ar400264e