Near-Field Plasmonic Probe with Super Resolution and High Throughput and Signal-to-Noise Ratio
Near-field scanning optical microscopy (NSOM) enables observation of light-matter interaction with a spatial resolution far below the diffraction limit without the need for a vacuum environment. However, modern NSOM techniques remain subject to a few fundamental restrictions. For example, concerning...
Saved in:
Published in | Nano letters Vol. 18; no. 2; pp. 881 - 885 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
14.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Near-field scanning optical microscopy (NSOM) enables observation of light-matter interaction with a spatial resolution far below the diffraction limit without the need for a vacuum environment. However, modern NSOM techniques remain subject to a few fundamental restrictions. For example, concerning the aperture tip (a-tip), the throughput is extremely low, and the lateral resolution is poor; both are limited by the aperture size. Meanwhile, with regard to the scattering tip (s-tip), the signal-to-noise ratio (SNR) appears to be almost zero; consequently, one cannot directly use the measured data. In this work, we present a plasmonic tip (p-tip) developed by tailoring subwavelength annuli so as to couple internal radial illumination to surface plasmon polaritons (SPPs), resulting in an ultrastrong, superfocused spot. Our p-tip supports both a radial symmetric SPP excitation and a Fabry–Pérot resonance, and experimental results indicate an optical resolution of 10 nm, a topographic resolution of 10 nm, a throughput of 3.28%, and an outstanding SNR of up to 18.2 (nearly free of background). The demonstrated p-tip outperforms state-of-the-art NSOM tips and can be readily employed in near-field optics, nanolithography, tip-enhanced Raman spectroscopy, and other applications. |
---|---|
AbstractList | Near-field scanning optical microscopy (NSOM) enables observation of light-matter interaction with a spatial resolution far below the diffraction limit without the need for a vacuum environment. However, modern NSOM techniques remain subject to a few fundamental restrictions. For example, concerning the aperture tip (a-tip), the throughput is extremely low, and the lateral resolution is poor; both are limited by the aperture size. Meanwhile, with regard to the scattering tip (s-tip), the signal-to-noise ratio (SNR) appears to be almost zero; consequently, one cannot directly use the measured data. In this work, we present a plasmonic tip (p-tip) developed by tailoring subwavelength annuli so as to couple internal radial illumination to surface plasmon polaritons (SPPs), resulting in an ultrastrong, superfocused spot. Our p-tip supports both a radial symmetric SPP excitation and a Fabry–Pérot resonance, and experimental results indicate an optical resolution of 10 nm, a topographic resolution of 10 nm, a throughput of 3.28%, and an outstanding SNR of up to 18.2 (nearly free of background). The demonstrated p-tip outperforms state-of-the-art NSOM tips and can be readily employed in near-field optics, nanolithography, tip-enhanced Raman spectroscopy, and other applications. Near-field scanning optical microscopy (NSOM) enables observation of light-matter interaction with a spatial resolution far below the diffraction limit without the need for a vacuum environment. However, modern NSOM techniques remain subject to a few fundamental restrictions. For example, concerning the aperture tip (a-tip), the throughput is extremely low, and the lateral resolution is poor; both are limited by the aperture size. Meanwhile, with regard to the scattering tip (s-tip), the signal-to-noise ratio (SNR) appears to be almost zero; consequently, one cannot directly use the measured data. In this work, we present a plasmonic tip (p-tip) developed by tailoring subwavelength annuli so as to couple internal radial illumination to surface plasmon polaritons (SPPs), resulting in an ultrastrong, superfocused spot. Our p-tip supports both a radial symmetric SPP excitation and a Fabry-Pérot resonance, and experimental results indicate an optical resolution of 10 nm, a topographic resolution of 10 nm, a throughput of 3.28%, and an outstanding SNR of up to 18.2 (nearly free of background). The demonstrated p-tip outperforms state-of-the-art NSOM tips and can be readily employed in near-field optics, nanolithography, tip-enhanced Raman spectroscopy, and other applications.Near-field scanning optical microscopy (NSOM) enables observation of light-matter interaction with a spatial resolution far below the diffraction limit without the need for a vacuum environment. However, modern NSOM techniques remain subject to a few fundamental restrictions. For example, concerning the aperture tip (a-tip), the throughput is extremely low, and the lateral resolution is poor; both are limited by the aperture size. Meanwhile, with regard to the scattering tip (s-tip), the signal-to-noise ratio (SNR) appears to be almost zero; consequently, one cannot directly use the measured data. In this work, we present a plasmonic tip (p-tip) developed by tailoring subwavelength annuli so as to couple internal radial illumination to surface plasmon polaritons (SPPs), resulting in an ultrastrong, superfocused spot. Our p-tip supports both a radial symmetric SPP excitation and a Fabry-Pérot resonance, and experimental results indicate an optical resolution of 10 nm, a topographic resolution of 10 nm, a throughput of 3.28%, and an outstanding SNR of up to 18.2 (nearly free of background). The demonstrated p-tip outperforms state-of-the-art NSOM tips and can be readily employed in near-field optics, nanolithography, tip-enhanced Raman spectroscopy, and other applications. Near-field scanning optical microscopy (NSOM) enables observation of light-matter interaction with a spatial resolution far below the diffraction limit without the need for a vacuum environment. However, modern NSOM techniques remain subject to a few fundamental restrictions. For example, concerning the aperture tip (a-tip), the throughput is extremely low, and the lateral resolution is poor; both are limited by the aperture size. Meanwhile, with regard to the scattering tip (s-tip), the signal-to-noise ratio (SNR) appears to be almost zero; consequently, one cannot directly use the measured data. In this work, we present a plasmonic tip (p-tip) developed by tailoring subwavelength annuli so as to couple internal radial illumination to surface plasmon polaritons (SPPs), resulting in an ultrastrong, superfocused spot. Our p-tip supports both a radial symmetric SPP excitation and a Fabry-Pérot resonance, and experimental results indicate an optical resolution of 10 nm, a topographic resolution of 10 nm, a throughput of 3.28%, and an outstanding SNR of up to 18.2 (nearly free of background). The demonstrated p-tip outperforms state-of-the-art NSOM tips and can be readily employed in near-field optics, nanolithography, tip-enhanced Raman spectroscopy, and other applications. |
Author | Chou, He-Chun Lin, Ding-Zheng Chen, Chi Chu, Jen-You Yen, Ta-Jen Jiang, Ruei-Han |
AuthorAffiliation | Department of Materials and Chemical Research Laboratory Department of Materials Science and Engineering Industrial Technology and Research Institute Research Center for Applied Sciences |
AuthorAffiliation_xml | – name: Department of Materials and Chemical Research Laboratory – name: Industrial Technology and Research Institute – name: Research Center for Applied Sciences – name: Department of Materials Science and Engineering |
Author_xml | – sequence: 1 givenname: Ruei-Han surname: Jiang fullname: Jiang, Ruei-Han organization: Research Center for Applied Sciences – sequence: 2 givenname: Chi surname: Chen fullname: Chen, Chi organization: Research Center for Applied Sciences – sequence: 3 givenname: Ding-Zheng surname: Lin fullname: Lin, Ding-Zheng organization: Industrial Technology and Research Institute – sequence: 4 givenname: He-Chun surname: Chou fullname: Chou, He-Chun organization: Research Center for Applied Sciences – sequence: 5 givenname: Jen-You surname: Chu fullname: Chu, Jen-You email: RyanChu@itri.org.tw organization: Industrial Technology and Research Institute – sequence: 6 givenname: Ta-Jen orcidid: 0000-0002-2710-2002 surname: Yen fullname: Yen, Ta-Jen email: tjyen@mx.nthu.edu.tw organization: Industrial Technology and Research Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29281295$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1vGyEQQFGUKt__IKo49rIOsKx36a2KmiZS5Ea2z1kNy6yNhcEFVlX_fde1k0MPrTgMgvfm8C7JqQ8eCbnlbMKZ4HfQpYkHHxzmPKk1k1yKE3LBq5IVU6XE6fu9kefkMqUNY0yVFTsj50KJhgtVXZDXGUIsHiw6Q18cpG3wtqMvMWikP21e08Www0jnmIIbsg2egjf00a7WdLmOYVitd0P-87awKw-uyKGYBZuQzmHEr8mHHlzCm-O8IsuHr8v7x-L5-7en-y_PBZSyyYXUXJopN8JohVAKFMYAYAeqL8V4-kZrw3gvq7oSTBswZa2N4nrasFqp8op8OqzdxfBjwJTbrU0dOgcew5BarhpeN6KSckQ_HtFBb9G0u2i3EH-1b0lGQB6ALoaUIvbvCGftvnw7lm_fyrfH8qP2-S-ts3mfwOcI1v1PZgd5_7sJQxxLpn8rvwFnMZ9J |
CitedBy_id | crossref_primary_10_1088_2040_8986_ac69f6 crossref_primary_10_1007_s12274_022_5220_7 crossref_primary_10_1109_ACCESS_2020_2964775 crossref_primary_10_3390_photonics8050143 crossref_primary_10_1103_PhysRevLett_123_163202 crossref_primary_10_3788_AOS231290 crossref_primary_10_1364_OE_389176 crossref_primary_10_1515_nanoph_2019_0397 crossref_primary_10_1063_5_0153569 crossref_primary_10_1364_AO_58_000588 crossref_primary_10_1038_s41377_023_01272_6 crossref_primary_10_1063_1_5125728 crossref_primary_10_1364_OE_494366 crossref_primary_10_1088_1361_6528_aaea35 crossref_primary_10_1002_adom_201901331 crossref_primary_10_1021_acsami_2c05083 crossref_primary_10_1021_acsnano_9b03980 crossref_primary_10_1038_s41467_019_10618_x crossref_primary_10_1038_s41566_019_0456_9 crossref_primary_10_1088_1361_6463_ab77e3 crossref_primary_10_1021_acs_jpcc_0c10922 crossref_primary_10_1364_OE_27_038098 crossref_primary_10_1007_s12274_021_3304_4 crossref_primary_10_1515_nanoph_2019_0027 crossref_primary_10_1116_1_5142029 crossref_primary_10_1109_JSEN_2023_3278321 crossref_primary_10_1021_acs_analchem_1c00806 crossref_primary_10_1364_OE_515048 crossref_primary_10_1007_s12274_022_5297_z crossref_primary_10_1038_s41598_023_41978_6 crossref_primary_10_1063_5_0194393 crossref_primary_10_1515_nanoph_2021_0405 crossref_primary_10_1515_nanoph_2022_0241 crossref_primary_10_1021_acs_jpcc_8b08844 crossref_primary_10_1038_s41598_020_72483_9 crossref_primary_10_1016_j_surfin_2021_101655 crossref_primary_10_3788_AOS231996 crossref_primary_10_1515_nanoph_2018_0015 crossref_primary_10_1109_JSTQE_2020_3017348 crossref_primary_10_1364_PRJ_502760 crossref_primary_10_3390_nano9121792 crossref_primary_10_1002_adma_201804774 crossref_primary_10_1002_adom_202200746 crossref_primary_10_1016_j_nanoso_2022_100933 crossref_primary_10_1039_D0CP05095D |
Cites_doi | 10.1007/s11468-006-9022-7 10.1063/1.372414 10.1116/1.571227 10.1364/AO.34.001215 10.1063/1.119255 10.1016/S0030-4018(97)00687-1 10.1038/20154 10.1063/1.1866253 10.1103/PhysRevA.88.063830 10.1063/1.1304866 10.1046/j.1365-2818.2003.01107.x 10.1007/3-540-44552-8_3 10.1117/12.2237854 10.1364/OE.16.000740 10.1063/1.481382 10.1063/1.1632023 10.1063/1.1827925 10.1046/j.1365-2818.2001.00800.x 10.1021/nl403306n 10.1016/j.optcom.2005.04.076 10.1063/1.94865 10.1103/PhysRev.66.163 10.1364/OE.24.002436 10.1103/PhysRevB.58.15419 10.1038/ncomms9973 10.1016/S0375-9601(97)00722-6 10.1038/nature12151 10.1021/nl903574a 10.1038/nature01937 10.1126/science.262.5138.1422 10.1046/j.1365-2818.2003.01108.x 10.1039/C7CS00209B 10.1364/OE.15.008550 10.1103/PhysRevLett.79.645 10.1021/nl104163m 10.1038/ncomms8993 10.1038/nnano.2009.348 10.1364/OPEX.13.001604 10.1021/acs.chemrev.6b00821 10.1021/acsphotonics.5b00339 10.3367/UFNe.2016.05.037817 10.1088/0957-4484/17/13/004 10.1103/PhysRevLett.93.137404 10.1364/OE.19.025990 10.1021/nl900694r 10.1021/nl903145p 10.1021/nl051013j 10.1039/C5NR08548A 10.1021/nl8023824 10.1016/S0030-4018(00)00826-9 10.1038/nphoton.2010.237 10.1103/PhysRevB.55.10105 10.1088/0957-4484/23/48/485304 10.1021/acs.nanolett.5b01571 10.1063/1.2032595 10.1021/nl304289g 10.1063/1.112931 10.1364/OE.16.017982 10.1021/nl501283c 10.1088/2040-8978/12/3/035004 10.1038/nphoton.2013.232 10.1016/j.mee.2015.03.014 10.1021/nl071340m 10.1088/1751-8113/40/41/015 10.1126/science.251.5000.1468 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.nanolett.7b04142 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-6992 |
EndPage | 885 |
ExternalDocumentID | 29281295 10_1021_acs_nanolett_7b04142 b742174425 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 123 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 4.4 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a348t-4b14d61d2db9ea32e2ddaaeca9f32323f8bbd01f457520bdad37bd91b6807993 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Thu Jul 10 18:14:01 EDT 2025 Mon Jul 21 05:42:23 EDT 2025 Thu Apr 24 23:10:30 EDT 2025 Tue Jul 01 03:13:58 EDT 2025 Thu Aug 27 13:41:56 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Fabry−Pérot resonance signal-to-noise ratio (SNR) surface plasmon polariton (SPP) Near-field scanning optical microscopy (NSOM) super resolution throughput plasmonic tip (p-tip) Fabry−Pérot resonance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a348t-4b14d61d2db9ea32e2ddaaeca9f32323f8bbd01f457520bdad37bd91b6807993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2710-2002 |
PMID | 29281295 |
PQID | 1981782544 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1981782544 pubmed_primary_29281295 crossref_primary_10_1021_acs_nanolett_7b04142 crossref_citationtrail_10_1021_acs_nanolett_7b04142 acs_journals_10_1021_acs_nanolett_7b04142 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-14 |
PublicationDateYYYYMMDD | 2018-02-14 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 Patanè S. (ref22/cit22) 2004; 27 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 Inouye Y. (ref61/cit61) 2001 Novotny L. (ref6/cit6) 2007; 50 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref42/cit42 doi: 10.1007/s11468-006-9022-7 – ident: ref38/cit38 doi: 10.1063/1.372414 – ident: ref48/cit48 doi: 10.1116/1.571227 – ident: ref11/cit11 doi: 10.1364/AO.34.001215 – ident: ref53/cit53 doi: 10.1063/1.119255 – ident: ref12/cit12 doi: 10.1016/S0030-4018(97)00687-1 – ident: ref52/cit52 doi: 10.1038/20154 – ident: ref51/cit51 doi: 10.1063/1.1866253 – ident: ref30/cit30 doi: 10.1103/PhysRevA.88.063830 – ident: ref49/cit49 doi: 10.1063/1.1304866 – ident: ref23/cit23 doi: 10.1046/j.1365-2818.2003.01107.x – start-page: 29 volume-title: Near-Field Optics and Surface Plasmon Polaritons year: 2001 ident: ref61/cit61 doi: 10.1007/3-540-44552-8_3 – ident: ref45/cit45 doi: 10.1117/12.2237854 – ident: ref16/cit16 doi: 10.1364/OE.16.000740 – volume: 50 start-page: 137 volume-title: Progress in Optics year: 2007 ident: ref6/cit6 – ident: ref4/cit4 doi: 10.1063/1.481382 – ident: ref18/cit18 doi: 10.1063/1.1632023 – ident: ref24/cit24 doi: 10.1063/1.1827925 – ident: ref5/cit5 doi: 10.1046/j.1365-2818.2001.00800.x – ident: ref31/cit31 doi: 10.1021/nl403306n – ident: ref41/cit41 doi: 10.1016/j.optcom.2005.04.076 – ident: ref1/cit1 doi: 10.1063/1.94865 – ident: ref10/cit10 doi: 10.1103/PhysRev.66.163 – ident: ref57/cit57 doi: 10.1364/OE.24.002436 – ident: ref60/cit60 doi: 10.1103/PhysRevB.58.15419 – ident: ref21/cit21 doi: 10.1038/ncomms9973 – ident: ref36/cit36 doi: 10.1016/S0375-9601(97)00722-6 – ident: ref65/cit65 doi: 10.1038/nature12151 – ident: ref35/cit35 doi: 10.1021/nl903574a – ident: ref63/cit63 doi: 10.1038/nature01937 – ident: ref3/cit3 doi: 10.1126/science.262.5138.1422 – ident: ref39/cit39 doi: 10.1046/j.1365-2818.2003.01108.x – ident: ref66/cit66 doi: 10.1039/C7CS00209B – ident: ref15/cit15 doi: 10.1364/OE.15.008550 – ident: ref37/cit37 doi: 10.1103/PhysRevLett.79.645 – ident: ref29/cit29 doi: 10.1021/nl104163m – ident: ref64/cit64 doi: 10.1038/ncomms8993 – ident: ref27/cit27 doi: 10.1038/nnano.2009.348 – ident: ref50/cit50 doi: 10.1364/OPEX.13.001604 – ident: ref67/cit67 doi: 10.1021/acs.chemrev.6b00821 – ident: ref32/cit32 doi: 10.1021/acsphotonics.5b00339 – ident: ref9/cit9 doi: 10.3367/UFNe.2016.05.037817 – ident: ref25/cit25 doi: 10.1088/0957-4484/17/13/004 – ident: ref40/cit40 doi: 10.1103/PhysRevLett.93.137404 – ident: ref28/cit28 doi: 10.1364/OE.19.025990 – ident: ref54/cit54 doi: 10.1021/nl900694r – ident: ref55/cit55 doi: 10.1021/nl903145p – ident: ref58/cit58 doi: 10.1021/nl051013j – ident: ref8/cit8 doi: 10.1039/C5NR08548A – ident: ref46/cit46 doi: 10.1021/nl8023824 – ident: ref17/cit17 doi: 10.1016/S0030-4018(00)00826-9 – volume: 27 start-page: 1 year: 2004 ident: ref22/cit22 publication-title: Riv. Nuovo Cimento Soc. Ital. Fis. – ident: ref47/cit47 doi: 10.1038/nphoton.2010.237 – ident: ref14/cit14 doi: 10.1103/PhysRevB.55.10105 – ident: ref62/cit62 doi: 10.1088/0957-4484/23/48/485304 – ident: ref56/cit56 doi: 10.1021/acs.nanolett.5b01571 – ident: ref19/cit19 doi: 10.1063/1.2032595 – ident: ref20/cit20 doi: 10.1021/nl304289g – ident: ref13/cit13 doi: 10.1063/1.112931 – ident: ref59/cit59 doi: 10.1364/OE.16.017982 – ident: ref7/cit7 doi: 10.1021/nl501283c – ident: ref26/cit26 doi: 10.1088/2040-8978/12/3/035004 – ident: ref44/cit44 doi: 10.1038/nphoton.2013.232 – ident: ref33/cit33 doi: 10.1016/j.mee.2015.03.014 – ident: ref34/cit34 doi: 10.1021/nl071340m – ident: ref43/cit43 doi: 10.1088/1751-8113/40/41/015 – ident: ref2/cit2 doi: 10.1126/science.251.5000.1468 |
SSID | ssj0009350 |
Score | 2.4720035 |
Snippet | Near-field scanning optical microscopy (NSOM) enables observation of light-matter interaction with a spatial resolution far below the diffraction limit without... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 881 |
Title | Near-Field Plasmonic Probe with Super Resolution and High Throughput and Signal-to-Noise Ratio |
URI | http://dx.doi.org/10.1021/acs.nanolett.7b04142 https://www.ncbi.nlm.nih.gov/pubmed/29281295 https://www.proquest.com/docview/1981782544 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYqemkPbSl9LC3ISL1w8DZ-xHGOFWKFKnVB3UXiRDR-pEK0yYpNLvz6jvOAlgpRrlbsZMYzmc-eFyGfdChBeONY6suMqRJKhriZM6k1GGlC6D2m3-b66FR9PUvPbg-Kdz34gn8Gt55WUNVIRjPNbKK4wl_uU6FRjyMUOljcFtmVXUdWVGI8EuVGjaly96wSDZJb_22Q7kGZnbWZvSTHY85OH2RyOW0bO3XX_5Zw_E9CXpEXA_CkX3pJ2SRPQvWaPP-jHOEWOZ-j2LNZjGmjJ4iqf8WyufQkJgzReF9LF-0qXNF449_LK4XK0xgpQpd9u59V23Rji4sf-DLW1GxeX6wD_R73_w1Zzg6XB0ds6L_AQCrTMGW58pp74W0eQIogvAcIDvJSIhCTpbHWJ7xUCPlEYj14mVmfc6tNkiHueUs2qroK7wkNPtMuOMRiBpT0GnJnIPFpCnkWjPYTso_cKQb1WRedZ1zwIg6OLCsGlk2IHPercEMd89hO4-cDs9jNrFVfx-OB5_dGUShQ4aIXBapQt_htueFZPFerCXnXy8jNigIJRACVbj-Cng_kGYIwEyPBufpINpqrNuwg0GnsbifdvwF2Svw5 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4heqA9UOiDbkupkXrpwds4dhzniBCr5bVC7Lbi1MiOnQq1JCuSXPrrO85jKZUQ4mrFjmcyE3_2jL8B-CxdrkOrMhrZPKYi1zlF3Mwol1IrrpzrIqbnMzn9Jk6uoqs1iIa7MDiJCkeq2iD-HbsA--rbCl2UKE09jk0gmMA_7zPEI6E37IPD-R3XLm8Ls6Iv484oUWK4MffAKH5dyqr769IDYLNddCYv4ftqum2uya9xU5tx9uc_Jscny7MFmz0MJQed3WzDmitewYt_yAlfw48ZOgGd-Aw3coEY-8aT6JILf32I-NNbMm-W7pb48__OeokuLPF5I2TRFf9ZNnXbNr_-iS-jdUln5XXlyKW3hjewmBwtDqe0r8ZANReqpsIwYSWzoTWJ0zx0obVau0wnOUdYxnNljA1YLhAAhoGx2vLY2IQZqYIYUdBbWC_Kwr0D4mwsM5chMlNacCt1kikd2CjSSeyUtCP4gtpJe2eq0jZOHrLUNw4qS3uVjYAPny3NelZzX1zj9yO96KrXsmP1eOT5_cEiUnQ_H1PRhSsbnFuiWOx32WIEO52prEYMUUCEU9H7J8jzCTami_Oz9Ox4dvoBniM8Uz5HnIldWK9vG_cRIVBt9lqD_wvNlwSp |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQkRAceFOW8jASFw5e4thxnGPVdlVeqxW7SBUHIjvjoApIVk1y4dd3JskuBamq4GrFjsf5Jv6SGX_D2CsTSheDLUQCZSp06UqBvFkKZYyzyoYwREw_zs3xZ_3uJDm5UOoLJ9HgSE0fxCevXkM5KgzIN9ReuapGi9pp6iMtNb59r1PkjsC9f7D8rber-uKs6M_4dZRZvTk1d8kotDcVzZ970yWEs994ZnfYl-2U-3yT79Ou9dPi119qjv9l0112e6SjfH_Azz12LVT32a0LIoUP2Nc5OoOYUaYbXyDX_kliunxBx4g4_cXly24dzjjFAQYUc1cBp_wRvhqKAK27tm9bnn7Dm4m2FvP6tAn8E6HiIVvNjlYHx2KsyiCc0rYV2ksNRkIMPgtOxSEGcC4ULisV0jNVWu8hkqVGIhhHHhyo1EMmvbFRimzoEdup6io8ZjxAaopQIEOzTiswLiusiyBJXJYGa2DCXuPq5KNTNXkfL49lTo2bJcvHJZswtXl0eTGqm1ORjR9X9BLbXutB3eOK619uUJGjG1JsxVWh7nBumZUpfW3rCdsd4LIdMUYDkVYlT_7BnhfsxuJwln94O3-_x24iS7OUKi71U7bTnnXhGTKh1j_vMX8OIZAHLA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-Field+Plasmonic+Probe+with+Super+Resolution+and+High+Throughput+and+Signal-to-Noise+Ratio&rft.jtitle=Nano+letters&rft.au=Jiang%2C+Ruei-Han&rft.au=Chen%2C+Chi&rft.au=Lin%2C+Ding-Zheng&rft.au=Chou%2C+He-Chun&rft.date=2018-02-14&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=18&rft.issue=2&rft.spage=881&rft.epage=885&rft_id=info:doi/10.1021%2Facs.nanolett.7b04142&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_nanolett_7b04142 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |