Near-Field Plasmonic Probe with Super Resolution and High Throughput and Signal-to-Noise Ratio

Near-field scanning optical microscopy (NSOM) enables observation of light-matter interaction with a spatial resolution far below the diffraction limit without the need for a vacuum environment. However, modern NSOM techniques remain subject to a few fundamental restrictions. For example, concerning...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 18; no. 2; pp. 881 - 885
Main Authors Jiang, Ruei-Han, Chen, Chi, Lin, Ding-Zheng, Chou, He-Chun, Chu, Jen-You, Yen, Ta-Jen
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 14.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Near-field scanning optical microscopy (NSOM) enables observation of light-matter interaction with a spatial resolution far below the diffraction limit without the need for a vacuum environment. However, modern NSOM techniques remain subject to a few fundamental restrictions. For example, concerning the aperture tip (a-tip), the throughput is extremely low, and the lateral resolution is poor; both are limited by the aperture size. Meanwhile, with regard to the scattering tip (s-tip), the signal-to-noise ratio (SNR) appears to be almost zero; consequently, one cannot directly use the measured data. In this work, we present a plasmonic tip (p-tip) developed by tailoring subwavelength annuli so as to couple internal radial illumination to surface plasmon polaritons (SPPs), resulting in an ultrastrong, superfocused spot. Our p-tip supports both a radial symmetric SPP excitation and a Fabry–Pérot resonance, and experimental results indicate an optical resolution of 10 nm, a topographic resolution of 10 nm, a throughput of 3.28%, and an outstanding SNR of up to 18.2 (nearly free of background). The demonstrated p-tip outperforms state-of-the-art NSOM tips and can be readily employed in near-field optics, nanolithography, tip-enhanced Raman spectroscopy, and other applications.
AbstractList Near-field scanning optical microscopy (NSOM) enables observation of light-matter interaction with a spatial resolution far below the diffraction limit without the need for a vacuum environment. However, modern NSOM techniques remain subject to a few fundamental restrictions. For example, concerning the aperture tip (a-tip), the throughput is extremely low, and the lateral resolution is poor; both are limited by the aperture size. Meanwhile, with regard to the scattering tip (s-tip), the signal-to-noise ratio (SNR) appears to be almost zero; consequently, one cannot directly use the measured data. In this work, we present a plasmonic tip (p-tip) developed by tailoring subwavelength annuli so as to couple internal radial illumination to surface plasmon polaritons (SPPs), resulting in an ultrastrong, superfocused spot. Our p-tip supports both a radial symmetric SPP excitation and a Fabry–Pérot resonance, and experimental results indicate an optical resolution of 10 nm, a topographic resolution of 10 nm, a throughput of 3.28%, and an outstanding SNR of up to 18.2 (nearly free of background). The demonstrated p-tip outperforms state-of-the-art NSOM tips and can be readily employed in near-field optics, nanolithography, tip-enhanced Raman spectroscopy, and other applications.
Near-field scanning optical microscopy (NSOM) enables observation of light-matter interaction with a spatial resolution far below the diffraction limit without the need for a vacuum environment. However, modern NSOM techniques remain subject to a few fundamental restrictions. For example, concerning the aperture tip (a-tip), the throughput is extremely low, and the lateral resolution is poor; both are limited by the aperture size. Meanwhile, with regard to the scattering tip (s-tip), the signal-to-noise ratio (SNR) appears to be almost zero; consequently, one cannot directly use the measured data. In this work, we present a plasmonic tip (p-tip) developed by tailoring subwavelength annuli so as to couple internal radial illumination to surface plasmon polaritons (SPPs), resulting in an ultrastrong, superfocused spot. Our p-tip supports both a radial symmetric SPP excitation and a Fabry-Pérot resonance, and experimental results indicate an optical resolution of 10 nm, a topographic resolution of 10 nm, a throughput of 3.28%, and an outstanding SNR of up to 18.2 (nearly free of background). The demonstrated p-tip outperforms state-of-the-art NSOM tips and can be readily employed in near-field optics, nanolithography, tip-enhanced Raman spectroscopy, and other applications.Near-field scanning optical microscopy (NSOM) enables observation of light-matter interaction with a spatial resolution far below the diffraction limit without the need for a vacuum environment. However, modern NSOM techniques remain subject to a few fundamental restrictions. For example, concerning the aperture tip (a-tip), the throughput is extremely low, and the lateral resolution is poor; both are limited by the aperture size. Meanwhile, with regard to the scattering tip (s-tip), the signal-to-noise ratio (SNR) appears to be almost zero; consequently, one cannot directly use the measured data. In this work, we present a plasmonic tip (p-tip) developed by tailoring subwavelength annuli so as to couple internal radial illumination to surface plasmon polaritons (SPPs), resulting in an ultrastrong, superfocused spot. Our p-tip supports both a radial symmetric SPP excitation and a Fabry-Pérot resonance, and experimental results indicate an optical resolution of 10 nm, a topographic resolution of 10 nm, a throughput of 3.28%, and an outstanding SNR of up to 18.2 (nearly free of background). The demonstrated p-tip outperforms state-of-the-art NSOM tips and can be readily employed in near-field optics, nanolithography, tip-enhanced Raman spectroscopy, and other applications.
Near-field scanning optical microscopy (NSOM) enables observation of light-matter interaction with a spatial resolution far below the diffraction limit without the need for a vacuum environment. However, modern NSOM techniques remain subject to a few fundamental restrictions. For example, concerning the aperture tip (a-tip), the throughput is extremely low, and the lateral resolution is poor; both are limited by the aperture size. Meanwhile, with regard to the scattering tip (s-tip), the signal-to-noise ratio (SNR) appears to be almost zero; consequently, one cannot directly use the measured data. In this work, we present a plasmonic tip (p-tip) developed by tailoring subwavelength annuli so as to couple internal radial illumination to surface plasmon polaritons (SPPs), resulting in an ultrastrong, superfocused spot. Our p-tip supports both a radial symmetric SPP excitation and a Fabry-Pérot resonance, and experimental results indicate an optical resolution of 10 nm, a topographic resolution of 10 nm, a throughput of 3.28%, and an outstanding SNR of up to 18.2 (nearly free of background). The demonstrated p-tip outperforms state-of-the-art NSOM tips and can be readily employed in near-field optics, nanolithography, tip-enhanced Raman spectroscopy, and other applications.
Author Chou, He-Chun
Lin, Ding-Zheng
Chen, Chi
Chu, Jen-You
Yen, Ta-Jen
Jiang, Ruei-Han
AuthorAffiliation Department of Materials and Chemical Research Laboratory
Department of Materials Science and Engineering
Industrial Technology and Research Institute
Research Center for Applied Sciences
AuthorAffiliation_xml – name: Department of Materials and Chemical Research Laboratory
– name: Industrial Technology and Research Institute
– name: Research Center for Applied Sciences
– name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Ruei-Han
  surname: Jiang
  fullname: Jiang, Ruei-Han
  organization: Research Center for Applied Sciences
– sequence: 2
  givenname: Chi
  surname: Chen
  fullname: Chen, Chi
  organization: Research Center for Applied Sciences
– sequence: 3
  givenname: Ding-Zheng
  surname: Lin
  fullname: Lin, Ding-Zheng
  organization: Industrial Technology and Research Institute
– sequence: 4
  givenname: He-Chun
  surname: Chou
  fullname: Chou, He-Chun
  organization: Research Center for Applied Sciences
– sequence: 5
  givenname: Jen-You
  surname: Chu
  fullname: Chu, Jen-You
  email: RyanChu@itri.org.tw
  organization: Industrial Technology and Research Institute
– sequence: 6
  givenname: Ta-Jen
  orcidid: 0000-0002-2710-2002
  surname: Yen
  fullname: Yen, Ta-Jen
  email: tjyen@mx.nthu.edu.tw
  organization: Industrial Technology and Research Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29281295$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1vGyEQQFGUKt__IKo49rIOsKx36a2KmiZS5Ea2z1kNy6yNhcEFVlX_fde1k0MPrTgMgvfm8C7JqQ8eCbnlbMKZ4HfQpYkHHxzmPKk1k1yKE3LBq5IVU6XE6fu9kefkMqUNY0yVFTsj50KJhgtVXZDXGUIsHiw6Q18cpG3wtqMvMWikP21e08Www0jnmIIbsg2egjf00a7WdLmOYVitd0P-87awKw-uyKGYBZuQzmHEr8mHHlzCm-O8IsuHr8v7x-L5-7en-y_PBZSyyYXUXJopN8JohVAKFMYAYAeqL8V4-kZrw3gvq7oSTBswZa2N4nrasFqp8op8OqzdxfBjwJTbrU0dOgcew5BarhpeN6KSckQ_HtFBb9G0u2i3EH-1b0lGQB6ALoaUIvbvCGftvnw7lm_fyrfH8qP2-S-ts3mfwOcI1v1PZgd5_7sJQxxLpn8rvwFnMZ9J
CitedBy_id crossref_primary_10_1088_2040_8986_ac69f6
crossref_primary_10_1007_s12274_022_5220_7
crossref_primary_10_1109_ACCESS_2020_2964775
crossref_primary_10_3390_photonics8050143
crossref_primary_10_1103_PhysRevLett_123_163202
crossref_primary_10_3788_AOS231290
crossref_primary_10_1364_OE_389176
crossref_primary_10_1515_nanoph_2019_0397
crossref_primary_10_1063_5_0153569
crossref_primary_10_1364_AO_58_000588
crossref_primary_10_1038_s41377_023_01272_6
crossref_primary_10_1063_1_5125728
crossref_primary_10_1364_OE_494366
crossref_primary_10_1088_1361_6528_aaea35
crossref_primary_10_1002_adom_201901331
crossref_primary_10_1021_acsami_2c05083
crossref_primary_10_1021_acsnano_9b03980
crossref_primary_10_1038_s41467_019_10618_x
crossref_primary_10_1038_s41566_019_0456_9
crossref_primary_10_1088_1361_6463_ab77e3
crossref_primary_10_1021_acs_jpcc_0c10922
crossref_primary_10_1364_OE_27_038098
crossref_primary_10_1007_s12274_021_3304_4
crossref_primary_10_1515_nanoph_2019_0027
crossref_primary_10_1116_1_5142029
crossref_primary_10_1109_JSEN_2023_3278321
crossref_primary_10_1021_acs_analchem_1c00806
crossref_primary_10_1364_OE_515048
crossref_primary_10_1007_s12274_022_5297_z
crossref_primary_10_1038_s41598_023_41978_6
crossref_primary_10_1063_5_0194393
crossref_primary_10_1515_nanoph_2021_0405
crossref_primary_10_1515_nanoph_2022_0241
crossref_primary_10_1021_acs_jpcc_8b08844
crossref_primary_10_1038_s41598_020_72483_9
crossref_primary_10_1016_j_surfin_2021_101655
crossref_primary_10_3788_AOS231996
crossref_primary_10_1515_nanoph_2018_0015
crossref_primary_10_1109_JSTQE_2020_3017348
crossref_primary_10_1364_PRJ_502760
crossref_primary_10_3390_nano9121792
crossref_primary_10_1002_adma_201804774
crossref_primary_10_1002_adom_202200746
crossref_primary_10_1016_j_nanoso_2022_100933
crossref_primary_10_1039_D0CP05095D
Cites_doi 10.1007/s11468-006-9022-7
10.1063/1.372414
10.1116/1.571227
10.1364/AO.34.001215
10.1063/1.119255
10.1016/S0030-4018(97)00687-1
10.1038/20154
10.1063/1.1866253
10.1103/PhysRevA.88.063830
10.1063/1.1304866
10.1046/j.1365-2818.2003.01107.x
10.1007/3-540-44552-8_3
10.1117/12.2237854
10.1364/OE.16.000740
10.1063/1.481382
10.1063/1.1632023
10.1063/1.1827925
10.1046/j.1365-2818.2001.00800.x
10.1021/nl403306n
10.1016/j.optcom.2005.04.076
10.1063/1.94865
10.1103/PhysRev.66.163
10.1364/OE.24.002436
10.1103/PhysRevB.58.15419
10.1038/ncomms9973
10.1016/S0375-9601(97)00722-6
10.1038/nature12151
10.1021/nl903574a
10.1038/nature01937
10.1126/science.262.5138.1422
10.1046/j.1365-2818.2003.01108.x
10.1039/C7CS00209B
10.1364/OE.15.008550
10.1103/PhysRevLett.79.645
10.1021/nl104163m
10.1038/ncomms8993
10.1038/nnano.2009.348
10.1364/OPEX.13.001604
10.1021/acs.chemrev.6b00821
10.1021/acsphotonics.5b00339
10.3367/UFNe.2016.05.037817
10.1088/0957-4484/17/13/004
10.1103/PhysRevLett.93.137404
10.1364/OE.19.025990
10.1021/nl900694r
10.1021/nl903145p
10.1021/nl051013j
10.1039/C5NR08548A
10.1021/nl8023824
10.1016/S0030-4018(00)00826-9
10.1038/nphoton.2010.237
10.1103/PhysRevB.55.10105
10.1088/0957-4484/23/48/485304
10.1021/acs.nanolett.5b01571
10.1063/1.2032595
10.1021/nl304289g
10.1063/1.112931
10.1364/OE.16.017982
10.1021/nl501283c
10.1088/2040-8978/12/3/035004
10.1038/nphoton.2013.232
10.1016/j.mee.2015.03.014
10.1021/nl071340m
10.1088/1751-8113/40/41/015
10.1126/science.251.5000.1468
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.nanolett.7b04142
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 885
ExternalDocumentID 29281295
10_1021_acs_nanolett_7b04142
b742174425
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
4.4
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a348t-4b14d61d2db9ea32e2ddaaeca9f32323f8bbd01f457520bdad37bd91b6807993
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Thu Jul 10 18:14:01 EDT 2025
Mon Jul 21 05:42:23 EDT 2025
Thu Apr 24 23:10:30 EDT 2025
Tue Jul 01 03:13:58 EDT 2025
Thu Aug 27 13:41:56 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Fabry−Pérot resonance
signal-to-noise ratio (SNR)
surface plasmon polariton (SPP)
Near-field scanning optical microscopy (NSOM)
super resolution
throughput
plasmonic tip (p-tip)
Fabry−Pérot resonance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a348t-4b14d61d2db9ea32e2ddaaeca9f32323f8bbd01f457520bdad37bd91b6807993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2710-2002
PMID 29281295
PQID 1981782544
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_1981782544
pubmed_primary_29281295
crossref_primary_10_1021_acs_nanolett_7b04142
crossref_citationtrail_10_1021_acs_nanolett_7b04142
acs_journals_10_1021_acs_nanolett_7b04142
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-14
PublicationDateYYYYMMDD 2018-02-14
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
Patanè S. (ref22/cit22) 2004; 27
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
Inouye Y. (ref61/cit61) 2001
Novotny L. (ref6/cit6) 2007; 50
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref42/cit42
  doi: 10.1007/s11468-006-9022-7
– ident: ref38/cit38
  doi: 10.1063/1.372414
– ident: ref48/cit48
  doi: 10.1116/1.571227
– ident: ref11/cit11
  doi: 10.1364/AO.34.001215
– ident: ref53/cit53
  doi: 10.1063/1.119255
– ident: ref12/cit12
  doi: 10.1016/S0030-4018(97)00687-1
– ident: ref52/cit52
  doi: 10.1038/20154
– ident: ref51/cit51
  doi: 10.1063/1.1866253
– ident: ref30/cit30
  doi: 10.1103/PhysRevA.88.063830
– ident: ref49/cit49
  doi: 10.1063/1.1304866
– ident: ref23/cit23
  doi: 10.1046/j.1365-2818.2003.01107.x
– start-page: 29
  volume-title: Near-Field Optics and Surface Plasmon Polaritons
  year: 2001
  ident: ref61/cit61
  doi: 10.1007/3-540-44552-8_3
– ident: ref45/cit45
  doi: 10.1117/12.2237854
– ident: ref16/cit16
  doi: 10.1364/OE.16.000740
– volume: 50
  start-page: 137
  volume-title: Progress in Optics
  year: 2007
  ident: ref6/cit6
– ident: ref4/cit4
  doi: 10.1063/1.481382
– ident: ref18/cit18
  doi: 10.1063/1.1632023
– ident: ref24/cit24
  doi: 10.1063/1.1827925
– ident: ref5/cit5
  doi: 10.1046/j.1365-2818.2001.00800.x
– ident: ref31/cit31
  doi: 10.1021/nl403306n
– ident: ref41/cit41
  doi: 10.1016/j.optcom.2005.04.076
– ident: ref1/cit1
  doi: 10.1063/1.94865
– ident: ref10/cit10
  doi: 10.1103/PhysRev.66.163
– ident: ref57/cit57
  doi: 10.1364/OE.24.002436
– ident: ref60/cit60
  doi: 10.1103/PhysRevB.58.15419
– ident: ref21/cit21
  doi: 10.1038/ncomms9973
– ident: ref36/cit36
  doi: 10.1016/S0375-9601(97)00722-6
– ident: ref65/cit65
  doi: 10.1038/nature12151
– ident: ref35/cit35
  doi: 10.1021/nl903574a
– ident: ref63/cit63
  doi: 10.1038/nature01937
– ident: ref3/cit3
  doi: 10.1126/science.262.5138.1422
– ident: ref39/cit39
  doi: 10.1046/j.1365-2818.2003.01108.x
– ident: ref66/cit66
  doi: 10.1039/C7CS00209B
– ident: ref15/cit15
  doi: 10.1364/OE.15.008550
– ident: ref37/cit37
  doi: 10.1103/PhysRevLett.79.645
– ident: ref29/cit29
  doi: 10.1021/nl104163m
– ident: ref64/cit64
  doi: 10.1038/ncomms8993
– ident: ref27/cit27
  doi: 10.1038/nnano.2009.348
– ident: ref50/cit50
  doi: 10.1364/OPEX.13.001604
– ident: ref67/cit67
  doi: 10.1021/acs.chemrev.6b00821
– ident: ref32/cit32
  doi: 10.1021/acsphotonics.5b00339
– ident: ref9/cit9
  doi: 10.3367/UFNe.2016.05.037817
– ident: ref25/cit25
  doi: 10.1088/0957-4484/17/13/004
– ident: ref40/cit40
  doi: 10.1103/PhysRevLett.93.137404
– ident: ref28/cit28
  doi: 10.1364/OE.19.025990
– ident: ref54/cit54
  doi: 10.1021/nl900694r
– ident: ref55/cit55
  doi: 10.1021/nl903145p
– ident: ref58/cit58
  doi: 10.1021/nl051013j
– ident: ref8/cit8
  doi: 10.1039/C5NR08548A
– ident: ref46/cit46
  doi: 10.1021/nl8023824
– ident: ref17/cit17
  doi: 10.1016/S0030-4018(00)00826-9
– volume: 27
  start-page: 1
  year: 2004
  ident: ref22/cit22
  publication-title: Riv. Nuovo Cimento Soc. Ital. Fis.
– ident: ref47/cit47
  doi: 10.1038/nphoton.2010.237
– ident: ref14/cit14
  doi: 10.1103/PhysRevB.55.10105
– ident: ref62/cit62
  doi: 10.1088/0957-4484/23/48/485304
– ident: ref56/cit56
  doi: 10.1021/acs.nanolett.5b01571
– ident: ref19/cit19
  doi: 10.1063/1.2032595
– ident: ref20/cit20
  doi: 10.1021/nl304289g
– ident: ref13/cit13
  doi: 10.1063/1.112931
– ident: ref59/cit59
  doi: 10.1364/OE.16.017982
– ident: ref7/cit7
  doi: 10.1021/nl501283c
– ident: ref26/cit26
  doi: 10.1088/2040-8978/12/3/035004
– ident: ref44/cit44
  doi: 10.1038/nphoton.2013.232
– ident: ref33/cit33
  doi: 10.1016/j.mee.2015.03.014
– ident: ref34/cit34
  doi: 10.1021/nl071340m
– ident: ref43/cit43
  doi: 10.1088/1751-8113/40/41/015
– ident: ref2/cit2
  doi: 10.1126/science.251.5000.1468
SSID ssj0009350
Score 2.4720035
Snippet Near-field scanning optical microscopy (NSOM) enables observation of light-matter interaction with a spatial resolution far below the diffraction limit without...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 881
Title Near-Field Plasmonic Probe with Super Resolution and High Throughput and Signal-to-Noise Ratio
URI http://dx.doi.org/10.1021/acs.nanolett.7b04142
https://www.ncbi.nlm.nih.gov/pubmed/29281295
https://www.proquest.com/docview/1981782544
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYqemkPbSl9LC3ISL1w8DZ-xHGOFWKFKnVB3UXiRDR-pEK0yYpNLvz6jvOAlgpRrlbsZMYzmc-eFyGfdChBeONY6suMqRJKhriZM6k1GGlC6D2m3-b66FR9PUvPbg-Kdz34gn8Gt55WUNVIRjPNbKK4wl_uU6FRjyMUOljcFtmVXUdWVGI8EuVGjaly96wSDZJb_22Q7kGZnbWZvSTHY85OH2RyOW0bO3XX_5Zw_E9CXpEXA_CkX3pJ2SRPQvWaPP-jHOEWOZ-j2LNZjGmjJ4iqf8WyufQkJgzReF9LF-0qXNF449_LK4XK0xgpQpd9u59V23Rji4sf-DLW1GxeX6wD_R73_w1Zzg6XB0ds6L_AQCrTMGW58pp74W0eQIogvAcIDvJSIhCTpbHWJ7xUCPlEYj14mVmfc6tNkiHueUs2qroK7wkNPtMuOMRiBpT0GnJnIPFpCnkWjPYTso_cKQb1WRedZ1zwIg6OLCsGlk2IHPercEMd89hO4-cDs9jNrFVfx-OB5_dGUShQ4aIXBapQt_htueFZPFerCXnXy8jNigIJRACVbj-Cng_kGYIwEyPBufpINpqrNuwg0GnsbifdvwF2Svw5
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4heqA9UOiDbkupkXrpwds4dhzniBCr5bVC7Lbi1MiOnQq1JCuSXPrrO85jKZUQ4mrFjmcyE3_2jL8B-CxdrkOrMhrZPKYi1zlF3Mwol1IrrpzrIqbnMzn9Jk6uoqs1iIa7MDiJCkeq2iD-HbsA--rbCl2UKE09jk0gmMA_7zPEI6E37IPD-R3XLm8Ls6Iv484oUWK4MffAKH5dyqr769IDYLNddCYv4ftqum2uya9xU5tx9uc_Jscny7MFmz0MJQed3WzDmitewYt_yAlfw48ZOgGd-Aw3coEY-8aT6JILf32I-NNbMm-W7pb48__OeokuLPF5I2TRFf9ZNnXbNr_-iS-jdUln5XXlyKW3hjewmBwtDqe0r8ZANReqpsIwYSWzoTWJ0zx0obVau0wnOUdYxnNljA1YLhAAhoGx2vLY2IQZqYIYUdBbWC_Kwr0D4mwsM5chMlNacCt1kikd2CjSSeyUtCP4gtpJe2eq0jZOHrLUNw4qS3uVjYAPny3NelZzX1zj9yO96KrXsmP1eOT5_cEiUnQ_H1PRhSsbnFuiWOx32WIEO52prEYMUUCEU9H7J8jzCTami_Oz9Ox4dvoBniM8Uz5HnIldWK9vG_cRIVBt9lqD_wvNlwSp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQkRAceFOW8jASFw5e4thxnGPVdlVeqxW7SBUHIjvjoApIVk1y4dd3JskuBamq4GrFjsf5Jv6SGX_D2CsTSheDLUQCZSp06UqBvFkKZYyzyoYwREw_zs3xZ_3uJDm5UOoLJ9HgSE0fxCevXkM5KgzIN9ReuapGi9pp6iMtNb59r1PkjsC9f7D8rber-uKs6M_4dZRZvTk1d8kotDcVzZ970yWEs994ZnfYl-2U-3yT79Ou9dPi119qjv9l0112e6SjfH_Azz12LVT32a0LIoUP2Nc5OoOYUaYbXyDX_kliunxBx4g4_cXly24dzjjFAQYUc1cBp_wRvhqKAK27tm9bnn7Dm4m2FvP6tAn8E6HiIVvNjlYHx2KsyiCc0rYV2ksNRkIMPgtOxSEGcC4ULisV0jNVWu8hkqVGIhhHHhyo1EMmvbFRimzoEdup6io8ZjxAaopQIEOzTiswLiusiyBJXJYGa2DCXuPq5KNTNXkfL49lTo2bJcvHJZswtXl0eTGqm1ORjR9X9BLbXutB3eOK619uUJGjG1JsxVWh7nBumZUpfW3rCdsd4LIdMUYDkVYlT_7BnhfsxuJwln94O3-_x24iS7OUKi71U7bTnnXhGTKh1j_vMX8OIZAHLA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-Field+Plasmonic+Probe+with+Super+Resolution+and+High+Throughput+and+Signal-to-Noise+Ratio&rft.jtitle=Nano+letters&rft.au=Jiang%2C+Ruei-Han&rft.au=Chen%2C+Chi&rft.au=Lin%2C+Ding-Zheng&rft.au=Chou%2C+He-Chun&rft.date=2018-02-14&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=18&rft.issue=2&rft.spage=881&rft.epage=885&rft_id=info:doi/10.1021%2Facs.nanolett.7b04142&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_nanolett_7b04142
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon