Gold Nanoparticle Functionalized Artificial Nacre: Facile in Situ Growth of Nanoparticles on Montmorillonite Nanosheets, Self-Assembly, and Their Multiple Properties

Artificial nacre based on clay nanosheets have been emerging as a new generation of bioinspired materials due to their super mechanical, fire-retardant, heat-shield, and gas barrier properties. Functional design in artificial nacre is highly demanded to further broaden the applications of these prom...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 6; no. 9; pp. 8250 - 8260
Main Authors Yao, Hong-Bin, Mao, Li-Bo, Yan, You-Xian, Cong, Huai-Ping, Lei, Xuan, Yu, Shu-Hong
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 25.09.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Artificial nacre based on clay nanosheets have been emerging as a new generation of bioinspired materials due to their super mechanical, fire-retardant, heat-shield, and gas barrier properties. Functional design in artificial nacre is highly demanded to further broaden the applications of these promising bioinspired materials. However, there is rarely a report on the functionalization of artificial nacre at present possibly due to the lack of a feasible strategy to introduce functional components in nacre-like materials without weakening other properties. In this study, we report a feasible method to fabricate artificial nacre-like functional hybrid films by using Au nanoparticle (NP) modified natural clay montmorillonite (MTM) nanosheets as efficient two-dimensional building blocks. First, Au NPs-chitosan-MTM hybrid nanosheets were prepared and homogeneously dispersed in deionized water by the facile in situ growth of Au NPs on chitosan-MTM nanosheets. Then, the obtained Au NPs-chitosan-MTM hybrid nanosheet suspension can be sprayed or vacuum filtrated to form nacre-like layered hybrid nanocoatings or free-standing hybrid films, respectively. Finally, as-fabricated artificial nacre nanocoatings or hybrid films have been demonstrated to behave with surface enhanced Raman scattering (SERS), catalytic, and photothermal conversion properties indicating the successful functionalization of artificial nacre by introducing Au NPs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1936-0851
1936-086X
DOI:10.1021/nn3029315